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tolerance-package Statistical Tolerance Intervals and Regions

Description

Statistical tolerance limits provide the limits between which we can expect to find a specified pro-
portion of a sampled population with a given level of confidence. This package provides functions
for estimating tolerance limits (intervals) for various univariate distributions (binomial, Cauchy,
discrete Pareto, exponential, two-parameter exponential, extreme value, hypergeometric, Laplace,
logistic, negative binomial, negative hypergeometric, normal, Pareto, Poisson-Lindley, Poisson,
uniform, and Zipf-Mandelbrot), Bayesian normal tolerance limits, multivariate normal tolerance
regions, nonparametric tolerance intervals, tolerance bands for regression settings (linear regres-
sion, nonlinear regression, nonparametric regression, and multivariate regression), and analysis of
variance tolerance intervals. Visualizations are also available for most of these settings.

Details

Package: tolerance
Type: Package
Version: 2.0.0
Date: 2020-02-04
Imports: MASS, rgl, stats4
License: GPL (>= 2)

Author(s)

Derek S. Young, Ph.D.

Maintainer: Derek S. Young <derek.young@uky.edu>
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References

Hahn, G. J. and Meeker, W. Q. (1991), Statistical Intervals: A Guide for Practitioners, Wiley-
Interscience.

Krishnamoorthy, K. and Mathew, T. (2009), Statistical Tolerance Regions: Theory, Applications,
and Computation, Wiley.

Patel, J. K. (1986), Tolerance Intervals - A Review, Communications in Statistics - Theory and
Methodology, 15, 2719–2762.

Young, D. S. (2010), tolerance: An R Package for Estimating Tolerance Intervals, Journal of
Statistical Software, 36(5), 1–39.

Young, D. S. (2014), Computing Tolerance Intervals and Regions in R. In M. B. Rao and C. R.
Rao (eds.), Handbook of Statistics, Volume 32: Computational Statistics with R, 309–338. North-
Holland, Amsterdam.

See Also

confint

acc.samp Acceptance Sampling

Description

Provides an upper bound on the number of acceptable rejects or nonconformities in a process. This
is similar to a 1-sided upper tolerance bound for a hypergeometric random variable.

Usage

acc.samp(n, N, alpha = 0.05, P = 0.99, AQL = 0.01, RQL = 0.02)

Arguments

n The sample size to be drawn from the inventory.

N The total inventory (or lot) size.

alpha 1-alpha is the confidence level for bounding the probability of accepting the
inventory.

P The proportion of items in the inventory which are to be accountable.

AQL The acceptable quality level, which is the largest proportion of defects in a pro-
cess considered acceptable. Note that 0 < AQL < 1.

RQL The rejectable quality level, which is the largest proportion of defects in an
independent lot that one is willing to tolerate. Note that AQL < RQL < 1.
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Value

acc.samp returns a matrix with the following quantities:

acceptance.limit

The number of items in the sample which may be unaccountable, yet still be
able to attain the desired confidence level 1-alpha.

lot.size The total inventory (or lot) size N.
confidence The confidence level 1-alpha.
P The proportion of accountable items specified by the user.
AQL The acceptable quality level as specified by the user. If the sampling were to be

repeated numerous times as a process, then this quantity specifies the proportion
of missing items considered acceptable from the process as a whole. Condition-
ing on the calculated value for acceptance.limit, the AQL is used to estimate
the producer’s risk (see prod.risk below).

RQL The rejectable quality level as specified by the user. This is the proportion of
individual items in a sample one is willing to tolerate missing. Conditioning
on the calculated value for acceptance.limit, the RQL is used to estimate the
consumer’s risk (see cons.risk below).

sample.size The sample size drawn as specified by n.
prod.risk The producer’s risk at the specified AQL. This is the probability of rejecting an

audit of a good inventory (also called the Type I error). A good inventory can be
rejected if an unfortunate random sample is selected (e.g., most of the missing
items happened to be selected for the audit). 1-prod.risk gives the confidence
level of this sampling plan for the specified AQL and RQL. If it is lower than
the confidence level desired (e.g., because the AQL is too high), then a warning
message will be displayed.

cons.risk The consumer’s risk at the specified RQL. This is the probability of accepting
an audit of a bad inventory (also called the Type II error). A bad inventory can
be accepted if a fortunate random sample is selected (e.g., most of the missing
items happened to not be selected for the audit).

References

Montgomery, D. C. (2005), Introduction to Statistical Quality Control, Fifth Edition, John Wiley &
Sons, Inc.

See Also

Hypergeometric

Examples

## A 90%/90% acceptance sampling plan for a sample of 450
## drawn from a lot size of 960.

acc.samp(n = 450, N = 960, alpha = 0.10, P = 0.90, AQL = 0.07,
RQL = 0.10)
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anovatol.int Tolerance Intervals for ANOVA

Description

Tolerance intervals for each factor level in a balanced (or nearly-balanced) ANOVA.

Usage

anovatol.int(lm.out, data, alpha = 0.05, P = 0.99, side = 1,
method = c("HE", "HE2", "WBE", "ELL", "KM",
"EXACT", "OCT"), m = 50)

Arguments

lm.out An object of class lm (i.e., the results from the linear model fitting routine such
that the anova function can act upon).

data A data frame consisting of the data fitted in lm.out. Note that data must have
one column for each main effect (i.e., factor) that is analyzed in lm.out and that
these columns must be of class factor.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

method The method for calculating the k-factors. The k-factor for the 1-sided toler-
ance intervals is performed exactly and thus is the same for the chosen method.
"HE" is the Howe method and is often viewed as being extremely accurate, even
for small sample sizes. "HE2" is a second method due to Howe, which per-
forms similarly to the Weissberg-Beatty method, but is computationally sim-
pler. "WBE" is the Weissberg-Beatty method (also called the Wald-Wolfowitz
method), which performs similarly to the first Howe method for larger sample
sizes. "ELL" is the Ellison correction to the Weissberg-Beatty method when f is
appreciably larger than n^2. A warning message is displayed if f is not larger
than n^2. "KM" is the Krishnamoorthy-Mathew approximation to the exact solu-
tion, which works well for larger sample sizes. "EXACT" computes the k-factor
exactly by finding the integral solution to the problem via the integrate func-
tion. Note the computation time of this method is largely determined by m.
"OCT" is the Owen approach to compute the k-factor when controlling the tails
so that there is not more than (1-P)/2 of the data in each tail of the distribution.

m The maximum number of subintervals to be used in the integrate function.
This is necessary only for method = "EXACT" and method = "OCT". The larger
the number, the more accurate the solution. Too low of a value can result in
an error. A large value can also cause the function to be slow for method =
"EXACT".
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Value

anovatol.int returns a list where each element is a data frame corresponding to each main effect
(i.e., factor) tested in the ANOVA and the rows of each data frame are the levels of that factor. The
columns of each data frame report the following:

mean The mean for that factor level.

n The effective sample size for that factor level.

k The k-factor for constructing the respective factor level’s tolerance interval.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

References

Howe, W. G. (1969), Two-Sided Tolerance Limits for Normal Populations - Some Improvements,
Journal of the American Statistical Association, 64, 610–620.

Weissberg, A. and Beatty, G. (1969), Tables of Tolerance Limit Factors for Normal Distributions,
Technometrics, 2, 483–500.

See Also

K.factor, normtol.int, lm, anova

Examples

## 90%/95% 2-sided tolerance intervals for a 2-way ANOVA
## using the "warpbreaks" data.

attach(warpbreaks)

lm.out <- lm(breaks ~ wool + tension)
out <- anovatol.int(lm.out, data = warpbreaks, alpha = 0.10,

P = 0.95, side = 2, method = "HE")
out

plottol(out, x = warpbreaks)

bayesnormtol.int Bayesian Normal Tolerance Intervals

Description

Provides 1-sided or 2-sided Bayesian tolerance intervals under the conjugate prior for data dis-
tributed according to a normal distribution.
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Usage

bayesnormtol.int(x = NULL, norm.stats = list(x.bar = NA,
s = NA, n = NA), alpha = 0.05, P = 0.99,
side = 1, method = c("HE", "HE2", "WBE",
"ELL", "KM", "EXACT", "OCT"), m = 50,
hyper.par = list(mu.0 = NULL,
sig2.0 = NULL, m.0 = NULL, n.0 = NULL))

Arguments

x A vector of data which is distributed according to a normal distribution.

norm.stats An optional list of statistics that can be provided in-lieu of the full dataset. If
provided, the user must specify all three components: the sample mean (x.bar),
the sample standard deviation (s), and the sample size (n).

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

method The method for calculating the k-factors. The k-factor for the 1-sided toler-
ance intervals is performed exactly and thus is the same for the chosen method.
"HE" is the Howe method and is often viewed as being extremely accurate, even
for small sample sizes. "HE2" is a second method due to Howe, which per-
forms similarly to the Weissberg-Beatty method, but is computationally sim-
pler. "WBE" is the Weissberg-Beatty method (also called the Wald-Wolfowitz
method), which performs similarly to the first Howe method for larger sample
sizes. "ELL" is the Ellison correction to the Weissberg-Beatty method when f is
appreciably larger than n^2. A warning message is displayed if f is not larger
than n^2. "KM" is the Krishnamoorthy-Mathew approximation to the exact solu-
tion, which works well for larger sample sizes. "EXACT" computes the k-factor
exactly by finding the integral solution to the problem via the integrate func-
tion. Note the computation time of this method is largely determined by m.
"OCT" is the Owen approach to compute the k-factor when controlling the tails
so that there is not more than (1-P)/2 of the data in each tail of the distribution.

m The maximum number of subintervals to be used in the integrate function.
This is necessary only for method = "EXACT" and method = "OCT". The larger
the number, the more accurate the solution. Too low of a value can result in
an error. A large value can also cause the function to be slow for method =
"EXACT".

hyper.par A list consisting of the hyperparameters for the conjugate prior: the hyperpa-
rameters for the mean (mu.0 and n.0) and the hyperparameters for the variance
(sig2.0 and m.0).

Details

Note that if one considers the non-informative prior distribution, then the Bayesian tolerance inter-
vals are the same as the classical solution, which can be obtained by using normtol.int.
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Value

bayesnormtol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

x.bar The sample mean.

1-sided.lower The 1-sided lower Bayesian tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper Bayesian tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower Bayesian tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper Bayesian tolerance bound. This is given only if side = 2.

References

Aitchison, J. (1964), Bayesian Tolerance Regions, Journal of the Royal Statistical Society, Series
B, 26, 161–175.

Guttman, I. (1970), Statistical Tolerance Regions: Classical and Bayesian, Charles Griffin and
Company.

Young, D. S., Gordon, C. M., Zhu, S., and Olin, B. D. (2016), Sample Size Determination Strategies
for Normal Tolerance Intervals Using Historical Data, Quality Engineering, 28, 337–351.

See Also

Normal, normtol.int, K.factor

Examples

## 95%/85% 2-sided Bayesian normal tolerance limits for
## a sample of size 100.

set.seed(100)
x <- rnorm(100)
out <- bayesnormtol.int(x = x, alpha = 0.05, P = 0.85,

side = 2, method = "EXACT",
hyper.par = list(mu.0 = 0,
sig2.0 = 1, n.0 = 10, m.0 = 10))

out

plottol(out, x, plot.type = "both", side = "upper",
x.lab = "Normal Data")
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bintol.int Binomial Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for binomial random variables. From a statistical
quality control perspective, these limits use the proportion of defective (or acceptable) items in a
sample to bound the number of defective (or acceptable) items in future productions of a specified
quantity.

Usage

bintol.int(x, n, m = NULL, alpha = 0.05, P = 0.99, side = 1,
method = c("LS", "WS", "AC", "JF", "CP", "AS",
"LO", "PR", "PO", "CL", "CC", "CWS"),
a1 = 0.5, a2 = 0.5)

Arguments

x The number of defective (or acceptable) units in the sample. Can be a vector of
length n, in which case the sum of x is used.

n The size of the random sample of units selected for inspection.

m The quantity produced in future groups. If m = NULL, then the tolerance limits
will be constructed assuming n for this quantity.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the defective (or acceptable) units in future samples of size m
to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

method The method for calculating the lower and upper confidence bounds, which are
used in the calculation of the tolerance bounds. The default method is "LS",
which is the large-sample method. "WS" is Wilson’s method, which is just the
score confidence interval. "AC" gives the Agresti-Coull method, which is also
appropriate when the sample size is large. "JF" is Jeffreys’ method, which is
a Bayesian approach to the estimation. "CP" is the Clopper-Pearson (exact)
method, which is based on beta percentiles and provides a more conservative
interval. "AS" is the arcsine method, which is appropriate when the sample
proportion is not too close to 0 or 1. "LO" is the logit method, which also is
appropriate when the sample proportion is not too close to 0 or 1, but yields a
more conservative interval. "PR" uses a probit transformation and is accurate
for large sample sizes. "PO" is based on a Poisson parameterization, but it tends
to be more erratic compared to the other methods. "CL" is the complementary
log transformation and also tends to perform well for large sample sizes. "CC"
gives a continuity-corrected version of the large-sample method. "CWS" gives
a continuity-corrected version of Wilson’s method. More information on these
methods can be found in the "References".
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a1 This specifies the first shape hyperparameter when using Jeffreys’ method.

a2 This specifies the second shape hyperparameter when using Jeffreys’ method.

Value

bintol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of defective (or acceptable) units in future samples of size m.

p.hat The proportion of defective (or acceptable) units in the sample, calculated by
x/n.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

References

Brown, L. D., Cai, T. T., and DasGupta, A. (2001), Interval Estimation for a Binomial Proportion,
Statistical Science, 16, 101–133.

Hahn, G. J. and Chandra, R. (1981), Tolerance Intervals for Poisson and Binomial Variables, Jour-
nal of Quality Technology, 13, 100–110.

Newcombe, R. G. (1998), Two-Sided Confidence Intervals for the Single Proportion: Comparison
of Seven Methods, Statistics in Medicine, 17, 857–872.

See Also

Binomial, umatol.int

Examples

## 85%/90% 2-sided binomial tolerance intervals for a future
## lot of 2500 when a sample of 230 were drawn from a lot of
## 1000. All methods but Jeffreys' method are compared
## below.

bintol.int(x = 230, n = 1000, m = 2500, alpha = 0.15, P = 0.90,
side = 2, method = "LS")

bintol.int(x = 230, n = 1000, m = 2500, alpha = 0.15, P = 0.90,
side = 2, method = "WS")

bintol.int(x = 230, n = 1000, m = 2500, alpha = 0.15, P = 0.90,
side = 2, method = "AC")

bintol.int(x = 230, n = 1000, m = 2500, alpha = 0.15, P = 0.90,
side = 2, method = "CP")

bintol.int(x = 230, n = 1000, m = 2500, alpha = 0.15, P = 0.90,
side = 2, method = "AS")

bintol.int(x = 230, n = 1000, m = 2500, alpha = 0.15, P = 0.90,
side = 2, method = "LO")



12 bonftol.int

bintol.int(x = 230, n = 1000, m = 2500, alpha = 0.15, P = 0.90,
side = 2, method = "PR")

bintol.int(x = 230, n = 1000, m = 2500, alpha = 0.15, P = 0.90,
side = 2, method = "PO")

bintol.int(x = 230, n = 1000, m = 2500, alpha = 0.15, P = 0.90,
side = 2, method = "CL")

bintol.int(x = 230, n = 1000, m = 2500, alpha = 0.15, P = 0.90,
side = 2, method = "CC")

bintol.int(x = 230, n = 1000, m = 2500, alpha = 0.15, P = 0.90,
side = 2, method = "CWS")

## Using Jeffreys' method to construct the 85%/90% 1-sided
## binomial tolerance limits. The first calculation assumes
## a prior on the proportion of defects which places greater
## density on values near 0. The second calculation assumes
## a prior on the proportion of defects which places greater
## density on values near 1.

bintol.int(x = 230, n = 1000, m = 2500, alpha = 0.15, P = 0.90,
side = 1, method = "JF", a1 = 2, a2 = 10)

bintol.int(x = 230, n = 1000, m = 2500, alpha = 0.15, P = 0.90,
side = 1, method = "JF", a1 = 5, a2 = 1)

bonftol.int Approximate 2-Sided Tolerance Intervals that Control the Tails Using
Bonferroni’s Inequality

Description

This function allows the user to control what proportion of the population is to be in the tails of the
given distribution for a 2-sided tolerance interval. The result is a conservative approximation based
on Bonferroni’s inequality.

Usage

bonftol.int(fn, P1 = 0.005, P2 = 0.005, alpha = 0.05, ...)

Arguments

fn The function name for the 2-sided tolerance interval to be calculated.

P1 The proportion of the population not covered in the lower tail of the distribution.

P2 The proportion of the population not covered in the upper tail of the distribution.

alpha The level chosen such that 1-alpha is the confidence level.

... Additional arguments passed to fn, including the data. All arguments that would
be specified in fn must also be specified here.
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Value

The results for the 2-sided tolerance interval procedure are reported. See the corresponding help file
for fn about specific output. Note that the (minimum) proportion of the population to be covered
by this interval is 1 - (P1 + P2).

Note

This function can be used with any 2-sided tolerance interval function, including the regression
tolerance interval functions.

References

Jensen, W. A. (2009), Approximations of Tolerance Intervals for Normally Distributed Data, Qual-
ity and Reliability Engineering International, 25, 571–580.

Patel, J. K. (1986), Tolerance Intervals - A Review, Communications in Statistics - Theory and
Methodology, 15, 2719–2762.

Examples

## 95%/97% tolerance interval for normally distributed
## data controlling 1% of the data is in the lower tail
## and 2% of the data in the upper tail.

set.seed(100)
x <- rnorm(100, 0, 0.2)
bonftol.int(normtol.int, x = x, P1 = 0.01, P2 = 0.02,

alpha = 0.05, method = "HE")

cautol.int Cauchy Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for Cauchy distributed data.

Usage

cautol.int(x, alpha = 0.05, P = 0.99, side = 1)

Arguments

x A vector of data which is Cauchy distributed.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).
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Value

cautol.int returns a data.frame with items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

References

Bain, L. J. (1978), Statistical Analysis of Reliability and Life-Testing Models, Marcel Dekker, Inc.

See Also

Cauchy

Examples

## 95%/90% 2-sided Cauchy tolerance interval for a sample
## of size 1000.

set.seed(100)
x <- rcauchy(1000, 100000, 10)
out <- cautol.int(x = x, alpha = 0.05, P = 0.90, side = 2)
out

plottol(out, x, plot.type = "both", x.lab = "Cauchy Data")

diffnormtol.int 1-Sided Tolerance Limits for the Distribution of the Difference Be-
tween Two Independent Normal Random Variables

Description

Provides 1-sided tolerance limits for the difference between two independent normal random vari-
ables. If the ratio of the variances is known, then an exact calculation is performed. Otherwise,
approximation methods are implemented.

Usage

diffnormtol.int(x1, x2, var.ratio = NULL, alpha = 0.05,
P = 0.99, method = c("HALL", "GK", "RG"))
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Arguments

x1 A vector of sample data which is distributed according to a normal distribution
(sample 1).

x2 Another vector of sample data which is distributed according to a normal distri-
bution (sample 2). It can be of a different sample size than the sample specified
by x1.

var.ratio A specified, known value of the variance ratio (i.e., the ratio of the variance
for population 1 to the variance of population 2). If NULL, then the variance
ratio is estimated according to one of the three methods specified in the method
argument.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by the tolerance limits.

method The method for estimating the variance ratio. This only needs to be specified
in the case when var.ratio is not NULL. "HALL" is Hall’s method, which takes
a bias-corrected version of the ratio between the sample variance for sample 1
to the sample variance for sample 2. "GK" is the Guo-Krishnamoorthy method,
which first calculates a bias-corrected version of the ratio between the sample
variance for sample 2 to the sample variance for sample 1. The resulting limit is
then compared to the limit from Hall’s method and the most conservative limit
is chosen. "RG" is the Reiser-Guttman method, which is a biased version of
the variance ratio that is calculated by taking the sample variance for sample
1 to the sample variance for sample 2. Typically, Hall’s method or the Guo-
Krishnamoorthy method are preferred to the Reiser-Guttman method.

Details

Satterthwaite’s approximation for the degrees of freedom is used when the variance ratio is un-
known.

Value

diffnormtol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

diff.bar The difference between the sample means.

1-sided.lower The 1-sided lower tolerance bound.

1-sided.upper The 1-sided upper tolerance bound.

Note

Unlike other tolerance interval functions, the output from diffnormtol.int cannot be passed to
plottol.



16 DiffProp

References

Guo, H. and Krishnamoorthy, K. (2004), New Approximate Inferential Methods for the Reliability
Parameter in a Stress-Strength Model: The Normal Case, Communications in Statistics - Theory
and Methods, 33, 1715–1731.

Hall, I. J. (1984), Approximate One-Sided Tolerance Limits for the Difference or Sum of Two
Independent Normal Variates, Journal of Quality Technology, 16, 15–19.

Krishnamoorthy, K. and Mathew, T. (2009), Statistical Tolerance Regions: Theory, Applications,
and Computation, Wiley.

Reiser, B. J. and Guttman, I. (1986), Statistical Inference for Pr(Y < X): The Normal Case, Techno-
metrics, 28, 253–257.

See Also

Normal, K.factor, normtol.int

Examples

## 90%/99% tolerance limits for the difference between two
## simulated normal data sets. This data is taken from
## Krishnamoorthy and Mathew (2009). Note that there is a
## calculational error in their example, which yields different
## results with the output below.

x1 <- c(10.166, 5.889, 8.258, 7.303, 8.757)
x2 <- c(-0.204, 2.578, 1.182, 1.892, 0.786, -0.517, 1.156,

0.980, 0.323, 0.437, 0.397, 0.050, 0.812, 0.720)

diffnormtol.int(x1, x2, alpha = 0.10, P = 0.99, method = "HALL")
diffnormtol.int(x1, x2, alpha = 0.10, P = 0.99, method = "GK")
diffnormtol.int(x1, x2, alpha = 0.10, P = 0.99, method = "RG")
diffnormtol.int(x1, x2, var.ratio = 3.8, alpha = 0.10, P = 0.99)

DiffProp Difference Between Two Proportions Distribution

Description

Density (mass), distribution function, quantile function, and random generation for the difference
between two proportions. This is determined by taking the difference between two independent
beta distributions.

Usage

ddiffprop(x, k1, k2, n1, n2, a1 = 0.5, a2 = 0.5,
log = FALSE, ...)

pdiffprop(q, k1, k2, n1, n2, a1 = 0.5, a2 = 0.5,
lower.tail = TRUE, log.p = FALSE, ...)
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qdiffprop(p, k1, k2, n1, n2, a1 = 0.5, a2 = 0.5,
lower.tail = TRUE, log.p = FALSE, ...)

rdiffprop(n, k1, k2, n1, n2, a1 = 0.5, a2 = 0.5)

Arguments

x, q Vector of quantiles.

p Vector of probabilities.

n The number of observations. If length>1, then the length is taken to be the
number required.

k1, k2 The number of successes drawn from groups 1 and 2, respectively.

n1, n2 The sample sizes for groups 1 and 2, respectively.

a1, a2 The shift parameters for the beta distributions. For the fiducial approach, we
know that the lower and upper limits are set at a1 = a2 = 0 and a1 = a2 = 1, re-
spectively, for the true p1 and p2. While computations can be performed on
real values outside the unit interval, a warning message will be returned if such
values are specified. For practical purposes, the default value of 0.5 should be
used for each parameter.

log, log.p Logical vectors. If TRUE, then the probabilities are given as log(p).

lower.tail Logical vector. If TRUE, then probabilities are P [X ≤ x], else P [X > x].

... Additional arguments passed to the Appell F1 function.

Details

The difference between two proportions distribution has a fairly complicated functional form. Please
see the article by Chen and Luo (2011), who corrected a typo in the article by Nadarajah and Kotz
(2007), for the functional form of this distribution.

Value

ddiffprop gives the density (mass), pdiffprop gives the distribution function, qdiffprop gives
the quantile function, and rdiffprop generates random deviates.

References

Chen, Y. and Luo, S. (2011), A Few Remarks on ’Statistical Distribution of the Difference of Two
Proportions’, Statistics in Medicine, 30, 1913–1915.

Nadarajah, S. and Kotz, S. (2007), Statistical Distribution of the Difference of Two Proportions,
Statistics in Medicine, 26, 3518–3523.

See Also

runif and .Random.seed about random number generation.
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Examples

## Randomly generated data from the difference between
## two proportions distribution.

set.seed(100)
x <- rdiffprop(n = 100, k1 = 2, k2 = 10, n1 = 17, n2 = 13)
hist(x, main = "Randomly Generated Data", prob = TRUE)

x.1 <- sort(x)
y <- ddiffprop(x = x.1, k1 = 2, k2 = 10, n1 = 17, n2 = 13)
lines(x.1, y, col = 2, lwd = 2)

plot(x.1, pdiffprop(q = x.1, k1 = 2, k2 = 10, n1 = 17,
n2 = 13), type = "l", xlab = "x",
ylab = "Cumulative Probabilities")

qdiffprop(p = 0.20, k1 = 2, k2 = 10, n1 = 17, n2 = 13,
lower.tail = FALSE)

qdiffprop(p = 0.80, k1 = 2, k2 = 10, n1 = 17, n2 = 13)

DiscretePareto Discrete Pareto Distribution

Description

Density (mass), distribution function, quantile function, and random generation for the discrete
Pareto distribution.

Usage

ddpareto(x, theta, log = FALSE)
pdpareto(q, theta, lower.tail = TRUE, log.p = FALSE)
qdpareto(p, theta, lower.tail = TRUE, log.p = FALSE)
rdpareto(n, theta)

Arguments

x, q Vector of quantiles.

p Vector of probabilities.

n The number of observations. If length>1, then the length is taken to be the
number required.

theta The shape parameter, which must be greater than 0 and less than 1.

log, log.p Logical vectors. If TRUE, then the probabilities are given as log(p).

lower.tail Logical vector. If TRUE, then probabilities are P [X ≤ x], else P [X > x].
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Details

The discrete Pareto distribution has mass

p(x) = θlog(1+x) − θlog(2+x),

where x = 0, 1, . . . and 0 < θ < 1 is the shape parameter.

Value

ddpareto gives the density (mass), pdpareto gives the distribution function, qdpareto gives the
quantile function, and rdpareto generates random deviates for the specified distribution.

References

Krishna, H. and Pundir, P. S. (2009), Discrete Burr and Discrete Pareto Distributions, Statistical
Methodology, 6, 177–188.

Young, D. S., Naghizadeh Qomi, M., and Kiapour, A. (2019), Approximate Discrete Pareto Toler-
ance Limits for Characterizing Extremes in Count Data, Statistica Neerlandica, 73, 4–21.

See Also

runif and .Random.seed about random number generation.

Examples

## Randomly generated data from the discrete Pareto
## distribution.

set.seed(100)
x <- rdpareto(n = 150, theta = 0.2)
hist(x, main = "Randomly Generated Data", prob = TRUE)

x.1 <- sort(x)
y <- ddpareto(x = x.1, theta = 0.2)
lines(x.1, y, col = 2, lwd = 2)

plot(x.1, pdpareto(q = x.1, theta = 0.2), type = "l",
xlab = "x", ylab = "Cumulative Probabilities")

qdpareto(p = 0.80, theta = 0.2, lower.tail = FALSE)
qdpareto(p = 0.95, theta = 0.2)

distfree.est Estimating Various Quantities for Distribution-Free Tolerance Inter-
vals

Description

When providing two of the three quantities n, alpha, and P, this function solves for the third quantity
in the context of distribution-free tolerance intervals.
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Usage

distfree.est(n = NULL, alpha = NULL, P = NULL, side = 1)

Arguments

n The necessary sample size to cover a proportion P of the population with confi-
dence 1-alpha. Can be a vector.

alpha 1 minus the confidence level attained when it is desired to cover a proportion P
of the population and a sample size n is provided. Can be a vector.

P The proportion of the population to be covered with confidence 1-alpha when
a sample size n is provided. Can be a vector.

side Whether a 1-sided or 2-sided tolerance interval is assumed (determined by side
= 1 or side = 2, respectively).

Value

When providing two of the three quantities n, alpha, and P, distfree.est returns the third quan-
tity. If more than one value of a certain quantity is specified, then a table will be returned.

References

Natrella, M. G. (1963), Experimental Statistics: National Bureau of Standards - Handbook No. 91,
United States Government Printing Office, Washington, D.C.

See Also

nptol.int

Examples

## Solving for 1 minus the confidence level.

distfree.est(n = 59, P = 0.95, side = 1)

## Solving for the sample size.

distfree.est(alpha = 0.05, P = 0.95, side = 1)

## Solving for the proportion of the population to cover.

distfree.est(n = 59, alpha = 0.05, side = 1)

## Solving for sample sizes for many tolerance specifications.

distfree.est(alpha = seq(0.01, 0.05, 0.01),
P = seq(0.80, 0.99, 0.01), side = 2)
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dpareto.ll Maximum Likelihood Estimation for the Discrete Pareto Distribution

Description

Performs maximum likelihood estimation for the parameter of the discrete Pareto distribution.

Usage

dpareto.ll(x, theta = NULL, ...)

Arguments

x A vector of raw data which is distributed according to a Poisson-Lindley distri-
bution.

theta Optional starting value for the parameter. If NULL, then the method of moments
estimator is used.

... Additional arguments passed to the mle function.

Details

The discrete Pareto distribution is a discretized of the continuous Type II Pareto distribution (also
called the Lomax distribution).

Value

See the help file for mle to see how the output is structured.

References

Krishna, H. and Pundir, P. S. (2009), Discrete Burr and Discrete Pareto Distributions, Statistical
Methodology, 6, 177–188.

Young, D. S., Naghizadeh Qomi, M., and Kiapour, A. (2019), Approximate Discrete Pareto Toler-
ance Limits for Characterizing Extremes in Count Data, Statistica Neerlandica, 73, 4–21.

See Also

mle, DiscretePareto

Examples

## Maximum likelihood estimation for randomly generated data
## from the discrete Pareto distribution.

set.seed(100)

dp.data <- rdpareto(n = 500, theta = 0.2)
out.dp <- dpareto.ll(dp.data)
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stats4::coef(out.dp)
stats4::vcov(out.dp)

dparetotol.int Discrete Pareto Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for data distributed according to the discrete Pareto
distribution.

Usage

dparetotol.int(x, m = NULL, alpha = 0.05, P = 0.99, side = 1,
...)

Arguments

x A vector of raw data which is distributed according to a discrete Pareto distribu-
tion.

m The number of observations in a future sample for which the tolerance limits
will be calculated. By default, m = NULL and, thus, m will be set equal to the
original sample size.

alpha The level chosen such that 1-alpha is the confidence level.
P The proportion of the population to be covered by this tolerance interval.
side Whether a 1-sided or 2-sided tolerance interval is required (determined by side

= 1 or side = 2, respectively).
... Additional arguments passed to the dpareto.ll function, which is used for

maximum likelihood estimation.

Details

The discrete Pareto is a discretized of the continuous Type II Pareto distribution (also called the
Lomax distribution). Discrete Pareto distributions are heavily right-skewed distributions and po-
tentially good models for discrete lifetime data and extremes in count data. For most practical
applications, one will typically be interested in 1-sided upper bounds.

Value

dparetotol.int returns a data frame with the following items:

alpha The specified significance level.
P The proportion of the population covered by this tolerance interval.
theta MLE for the shape parameter theta.
1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.
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References

Young, D. S., Naghizadeh Qomi, M., and Kiapour, A. (2019), Approximate Discrete Pareto Toler-
ance Limits for Characterizing Extremes in Count Data, Statistica Neerlandica, 73, 4–21.

See Also

DiscretePareto, dpareto.ll

Examples

## 95%/95% 1-sided tolerance intervals for data assuming
## the discrete Pareto distribution.

set.seed(100)

x <- rdpareto(n = 500, theta = 0.5)
out <- dparetotol.int(x, alpha = 0.05, P = 0.95, side = 1)
out

exp2tol.int 2-Parameter Exponential Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for data distributed according to a 2-parameter ex-
ponential distribution. Data with Type II censoring is permitted.

Usage

exp2tol.int(x, alpha = 0.05, P = 0.99, side = 1,
method = c("GPU", "DUN", "KM"), type.2 = FALSE)

Arguments

x A vector of data which is distributed according to the 2-parameter exponential
distribution.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

method The method for how the upper tolerance bound is approximated. "GPU" is the
Guenther-Patil-Upppuluri method. "DUN" is the Dunsmore method, which has
been empirically shown to be an improvement for samples greater than or equal
to 8. "KM" is the Krishnamoorthy-Mathew method, which is typically more
liberal than the other methods. More information on these methods can be found
in the "References", which also highlight general sample size conditions as to
when these different methods should be used.
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type.2 Select TRUE if Type II censoring is present (i.e., the data set is censored at the
maximum value present). The default is FALSE.

Value

exp2tol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

References

Dunsmore, I. R. (1978), Some Approximations for Tolerance Factors for the Two Parameter Expo-
nential Distribution, Technometrics, 20, 317–318.

Engelhardt, M. and Bain, L. J. (1978), Tolerance Limits and Confidence Limits on Reliability for
the Two-Parameter Exponential Distribution, Technometrics, 20, 37–39.

Guenther, W. C., Patil, S. A., and Uppuluri, V. R. R. (1976), One-Sided β-Content Tolerance Factors
for the Two Parameter Exponential Distribution, Technometrics, 18, 333–340.

Krishnamoorthy, K. and Mathew, T. (2009), Statistical Tolerance Regions: Theory, Applications,
and Computation, Wiley.

See Also

TwoParExponential

Examples

## 95%/90% 1-sided 2-parameter exponential tolerance intervals
## for a sample of size 50.

set.seed(100)
x <- r2exp(50, 6, shift = 55)
out <- exp2tol.int(x = x, alpha = 0.05, P = 0.90, side = 1,

method = "DUN", type.2 = FALSE)
out

plottol(out, x, plot.type = "both", side = "upper",
x.lab = "2-Parameter Exponential Data")
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exptol.int Exponential Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for data distributed according to an exponential dis-
tribution. Data with Type II censoring is permitted.

Usage

exptol.int(x, alpha = 0.05, P = 0.99, side = 1, type.2 = FALSE)

Arguments

x A vector of data which is distributed according to an exponential distribution.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

type.2 Select TRUE if Type II censoring is present (i.e., the data set is censored at the
maximum value present). The default is FALSE.

Value

exptol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

lambda.hat The mean of the data (i.e., 1/rate).

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

References

Blischke, W. R. and Murthy, D. N. P. (2000), Reliability: Modeling, Prediction, and Optimization,
John Wiley & Sons, Inc.

See Also

Exponential
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Examples

## 95%/99% 1-sided exponential tolerance intervals for a
## sample of size 50.

set.seed(100)
x <- rexp(100, 0.004)
out <- exptol.int(x = x, alpha = 0.05, P = 0.99, side = 1,

type.2 = FALSE)
out

plottol(out, x, plot.type = "both", side = "lower",
x.lab = "Exponential Data")

exttol.int Weibull (or Extreme-Value) Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for data distributed according to either a Weibull
distribution or extreme-value (also called Gumbel) distributions.

Usage

exttol.int(x, alpha = 0.05, P = 0.99, side = 1,
dist = c("Weibull", "Gumbel"), ext = c("min", "max"),
NR.delta = 1e-8)

Arguments

x A vector of data which is distributed according to either a Weibull distribution
or an extreme-value distribution.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

dist Select either dist = "Weibull" or dist = "Gumbel" if the data is distributed
according to the Weibull or extreme-value distribution, respectively.

ext If dist = "Gumbel", then select which extreme is to be modeled for the Gum-
bel distribution. The Gumbel distribution for the minimum (i.e., ext = "min")
corresponds to a left-skewed distribution and the Gumbel distribution for the
maximum (i.e., ext = "max") corresponds to a right-skewed distribution

NR.delta The stopping criterion used for the Newton-Raphson algorithm when finding the
maximum likelihood estimates of the Weibull or extreme-value distribution.
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Details

Recall that the relationship between the Weibull distribution and the extreme-value distribution for
the minimum is that if the random variable X is distributed according to a Weibull distribution, then
the random variable Y = ln(X) is distributed according to an extreme-value distribution for the
minimum.

If dist = "Weibull", then the natural logarithm of the data are taken so that a Newton-Raphson
algorithm can be employed to find the MLEs of the extreme-value distribution for the minimum and
then the data and MLEs are transformed back appropriately. No transformation is performed if dist
= "Gumbel". The Newton-Raphson algorithm is initialized by the method of moments estimators
for the parameters.

Value

exttol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

shape.1 MLE for the shape parameter if dist = "Weibull" or for the location parameter
if dist = "Gumbel".

shape.2 MLE for the scale parameter if dist = "Weibull" or dist = "Gumbel".

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

References

Bain, L. J. and Engelhardt, M. (1981), Simple Approximate Distributional Results for Confidence
and Tolerance Limits for the Weibull Distribution Based on Maximum Likelihood Estimators, Tech-
nometrics, 23, 15–20.

Coles, S. (2001), An Introduction to Statistical Modeling of Extreme Values, Springer.

See Also

Weibull

Examples

## 85%/90% 1-sided Weibull tolerance intervals for a sample
## of size 150.

set.seed(100)
x <- rweibull(150, 3, 75)
out <- exttol.int(x = x, alpha = 0.15, P = 0.90, side = 1,

dist = "Weibull")
out
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plottol(out, x, plot.type = "both", side = "lower",
x.lab = "Weibull Data")

F1 Appell’s F1 Hypergeometric Function

Description

The Appell function of the first kind, which is a two variable extension of the hypergeometric
distribution.

Usage

F1(a, b, b.prime, c, x, y, ...)

Arguments

a, b, b.prime, c Appropriate parameters for this function.

x, y The inputted values to evaluate this function such that each is less than 1 in
absolute value.

... Additional arguments passed to the integrate function.

Value

F1 returns the simple integral result for the Appell function of the first kind with the arguments
specified above.

Note

This function is solved by using a simple integral representation for real numbers. While all four of
the Appell functions can be extended to the complex plane, this is not an option for this code.

References

Bailey, W. N. (1935), Generalised Hypergeometric Series, Cambridge University Press.

See Also

DiffProp, integrate

Examples

## Sample calculation.

F1(a = 3, b = 4, b.prime = 5, c = 13, x = 0.2, y = 0.4)



fidbintol.int 29

fidbintol.int Fiducial-Based Tolerance Intervals for the Function of Two Binomial
Proportions

Description

Provides 1-sided or 2-sided tolerance intervals for the function of two binomial proportions using
fiducial quantities.

Usage

fidbintol.int(x1, x2, n1, n2, m1 = NULL, m2 = NULL, FUN,
alpha = 0.05, P = 0.99, side = 1, K = 1000,
B = 1000)

Arguments

x1 A value of observed "successes" from group 1.

x2 A value of observed "successes" from group 2.

n1 The total number of trials for group 1.

n2 The total number of trials for group 2.

m1 The total number of future trials for group 1. If NULL, then it is set to n1.

m2 The total number of future trials for group 2. If NULL, then it is set to n2.

FUN Any reasonable (and meaningful) function taking exactly two arguments that we
are interested in constructing a tolerance interval on.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

K The number of fiducial quantities to be generated. The number of iterations
should be at least as large as the default value of 1000. See Details for the
definition of the fiducial quantity for a binomial proportion.

B The number of iterations used for the Monte Carlo algorithm which determines
the tolerance limits. The number of iterations should be at least as large as the
default value of 1000.

Details

If X is observed from a Bin(n, p) distribution, then the fiducial quantity for p is Beta(X+0.5, n−
X + 0.5).
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Value

fidbintol.int returns a list with two items. The first item (tol.limits) is a data frame with the
following items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

fn.est A point estimate of the functional form of interest using the maximum likelihood
estimates calculated with the inputted values of x1, x2, n1, and n2.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

The second item (fn) simply returns the functional form specified by FUN.

References

Clopper, C. J. and Pearson, E. S. (1934), The Use of Confidence or Fiducial Limits Illustrated in
the Case of the Binomial, Biometrika, 26, 404–413.

Krishnamoorthy, K. and Lee, M. (2010), Inference for Functions of Parameters in Discrete Distri-
butions Based on Fiducial Approach: Binomial and Poisson Cases, Journal of Statistical Planning
and Inference, 140, 1182–1192.

Mathew, T. and Young, D. S. (2013), Fiducial-Based Tolerance Intervals for Some Discrete Distri-
butions, Computational Statistics and Data Analysis, 61, 38–49.

See Also

fidnegbintol.int, fidpoistol.int

Examples

## 95%/99% 1-sided and 2-sided tolerance intervals for
## the difference between binomial proportions.

set.seed(100)

p1 <- 0.2
p2 <- 0.4
n1 <- n2 <- 200
x1 <- rbinom(1, n1, p1)
x2 <- rbinom(1, n2, p2)
fun.ti <- function(x, y) x - y

fidbintol.int(x1, x2, n1, n2, m1 = 500, m2 = 500, FUN = fun.ti,
alpha = 0.05, P = 0.99, side = 1)

fidbintol.int(x1, x2, n1, n2, m1 = 500, m2 = 500, FUN = fun.ti,
alpha = 0.05, P = 0.99, side = 2)
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fidnegbintol.int Fiducial-Based Tolerance Intervals for the Function of Two Negative
Binomial Proportions

Description

Provides 1-sided or 2-sided tolerance intervals for the function of two negative binomial proportions
using fiducial quantities.

Usage

fidnegbintol.int(x1, x2, n1, n2, m1 = NULL, m2 = NULL, FUN,
alpha = 0.05, P = 0.99, side = 1, K = 1000,
B = 1000)

Arguments

x1 A value of observed "failures" from group 1.

x2 A value of observed "failures" from group 2.

n1 The target number of successes for group 1.

n2 The target number of successes for group 2.

m1 The total number of future trials for group 1. If NULL, then it is set to n1.

m2 The total number of future trials for group 2. If NULL, then it is set to n2.

FUN Any reasonable (and meaningful) function taking exactly two arguments that we
are interested in constructing a tolerance interval on.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

K The number of fiducial quantities to be generated. The number of iterations
should be at least as large as the default value of 1000. See Details for the
definition of the fiducial quantity for a negative binomial proportion.

B The number of iterations used for the Monte Carlo algorithm which determines
the tolerance limits. The number of iterations should be at least as large as the
default value of 1000.

Details

If X is observed from a NegBin(n, p) distribution, then the fiducial quantity for p is Beta(n,X +
0.5).
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Value

fidnegbintol.int returns a list with two items. The first item (tol.limits) is a data frame with
the following items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

fn.est A point estimate of the functional form of interest using the maximum likelihood
estimates calculated with the inputted values of x1, x2, n1, and n2.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

The second item (fn) simply returns the functional form specified by FUN.

References

Cai, Y. and Krishnamoorthy, K. (2005), A Simple Improved Inferential Method for Some Discrete
Distributions, Computational Statistics and Data Analysis, 48, 605–621.

Clopper, C. J. and Pearson, E. S. (1934), The Use of Confidence or Fiducial Limits Illustrated in
the Case of the Binomial, Biometrika, 26, 404–413.

Krishnamoorthy, K. and Lee, M. (2010), Inference for Functions of Parameters in Discrete Distri-
butions Based on Fiducial Approach: Binomial and Poisson Cases, Journal of Statistical Planning
and Inference, 140, 1182–1192.

Mathew, T. and Young, D. S. (2013), Fiducial-Based Tolerance Intervals for Some Discrete Distri-
butions, Computational Statistics and Data Analysis, 61, 38–49.

See Also

fidbintol.int, fidpoistol.int

Examples

## 95%/99% 1-sided and 2-sided tolerance intervals for
## the ratio of odds ratios for negative binomial proportions.

set.seed(100)

p1 <- 0.6
p2 <- 0.2
n1 <- n2 <- 50
x1 <- rnbinom(1, n1, p1)
x2 <- rnbinom(1, n2, p2)
fun.ti <- function(x, y) x * (1 - y) / (y * (1 - x))

fidnegbintol.int(x1, x2, n1, n2, m1 = 50, m2 = 50, FUN = fun.ti,
alpha = 0.05, P = 0.99, side = 1)

fidnegbintol.int(x1, x2, n1, n2, m1 = 50, m2 = 50, FUN = fun.ti,
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alpha = 0.05, P = 0.99, side = 2)

fidpoistol.int Fiducial-Based Tolerance Intervals for the Function of Two Poisson
Rates

Description

Provides 1-sided or 2-sided tolerance intervals for the function of two Poisson rates using fiducial
quantities.

Usage

fidpoistol.int(x1, x2, n1, n2, m1 = NULL, m2 = NULL, FUN,
alpha = 0.05, P = 0.99, side = 1, K = 1000,
B = 1000)

Arguments

x1 A value of observed counts from group 1.

x2 A value of observed counts from group 2.

n1 The length of time that x1 was recorded over.

n2 The length of time that x2 was recorded over.

m1 The total number of future trials for group 1. If NULL, then it is set to n1.

m2 The total number of future trials for group 2. If NULL, then it is set to n2.

FUN Any reasonable (and meaningful) function taking exactly two arguments that we
are interested in constructing a tolerance interval on.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

K The number of fiducial quantities to be generated. The number of iterations
should be at least as large as the default value of 1000. See Details for the
definition of the fiducial quantity for a Poisson rate.

B The number of iterations used for the Monte Carlo algorithm which determines
the tolerance limits. The number of iterations should be at least as large as the
default value of 1000.

Details

If X is observed from a Poi(n ∗ λ) distribution, then the fiducial quantity for λ is χ2
2∗x+1/(2 ∗ n).
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Value

fidpoistol.int returns a list with two items. The first item (tol.limits) is a data frame with the
following items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

fn.est A point estimate of the functional form of interest using the maximum likelihood
estimates calculated with the inputted values of x1, x2, n1, and n2.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

The second item (fn) simply returns the functional form specified by FUN.

References

Cox, D. R. (1953), Some Simple Approximate Tests for Poisson Variates, Biometrika, 40, 354–360.

Krishnamoorthy, K. and Lee, M. (2010), Inference for Functions of Parameters in Discrete Distri-
butions Based on Fiducial Approach: Binomial and Poisson Cases, Journal of Statistical Planning
and Inference, 140, 1182–1192.

Mathew, T. and Young, D. S. (2013), Fiducial-Based Tolerance Intervals for Some Discrete Distri-
butions, Computational Statistics and Data Analysis, 61, 38–49.

See Also

fidbintol.int, fidnegbintol.int

Examples

## 95%/99% 1-sided and 2-sided tolerance intervals for
## the ratio of two Poisson rates.

set.seed(100)

lambda1 <- 10
lambda2 <- 2
n1 <- 3000
n2 <- 3250
x1 <- rpois(1, n1 * lambda1)
x2 <- rpois(1, n2 * lambda2)
fun.ti <- function(x, y) x / y

fidpoistol.int(x1, x2, n1, n2, m1 = 2000, m2 = 2500,
FUN = fun.ti, alpha = 0.05, P = 0.99, side = 1)

fidpoistol.int(x1, x2, n1, n2, m1 = 2000, m2 = 2500,
FUN = fun.ti, alpha = 0.05, P = 0.99, side = 2)
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gamtol.int Gamma (or Log-Gamma) Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for data distributed according to either a gamma
distribution or log-gamma distribution.

Usage

gamtol.int(x, alpha = 0.05, P = 0.99, side = 1,
method = c("HE", "HE2", "WBE", "ELL", "KM", "EXACT",
"OCT"), m = 50, log.gamma = FALSE)

Arguments

x A vector of data which is distributed according to either a gamma distribution
or a log-gamma distribution.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

method The method for calculating the k-factors. The k-factor for the 1-sided toler-
ance intervals is performed exactly and thus is the same for the chosen method.
"HE" is the Howe method and is often viewed as being extremely accurate, even
for small sample sizes. "HE2" is a second method due to Howe, which per-
forms similarly to the Weissberg-Beatty method, but is computationally sim-
pler. "WBE" is the Weissberg-Beatty method (also called the Wald-Wolfowitz
method), which performs similarly to the first Howe method for larger sample
sizes. "ELL" is the Ellison correction to the Weissberg-Beatty method when f is
appreciably larger than n^2. A warning message is displayed if f is not larger
than n^2. "KM" is the Krishnamoorthy-Mathew approximation to the exact solu-
tion, which works well for larger sample sizes. "EXACT" computes the k-factor
exactly by finding the integral solution to the problem via the integrate func-
tion. Note the computation time of this method is largely determined by m.
"OCT" is the Owen approach to compute the k-factor when controlling the tails
so that there is not more than (1-P)/2 of the data in each tail of the distribution.

m The maximum number of subintervals to be used in the integrate function.
This is necessary only for method = "EXACT" and method = "OCT". The larger
the number, the more accurate the solution. Too low of a value can result in
an error. A large value can also cause the function to be slow for method =
"EXACT".

log.gamma If TRUE, then the data is considered to be from a log-gamma distribution, in
which case the output gives tolerance intervals for the log-gamma distribution.
The default is FALSE.
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Details

Recall that if the random variable X is distributed according to a log-gamma distribution, then the
random variable Y = ln(X) is distributed according to a gamma distribution.

Value

gamtol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

References

Krishnamoorthy, K., Mathew, T., and Mukherjee, S. (2008), Normal-Based Methods for a Gamma
Distribution: Prediction and Tolerance Intervals and Stress-Strength Reliability, Technometrics, 50,
69–78.

See Also

GammaDist, K.factor

Examples

## 99%/99% 1-sided gamma tolerance intervals for a sample
## of size 50.

set.seed(100)
x <- rgamma(50, 0.30, scale = 2)
out <- gamtol.int(x = x, alpha = 0.01, P = 0.99, side = 1)
out

plottol(out, x, plot.type = "both", side = "upper",
x.lab = "Gamma Data")

hypertol.int Hypergeometric Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for hypergeometric random variables. From a sam-
pling without replacement perspective, these limits use the proportion of units from group A (e.g.,
"black balls" in an urn) in a sample to bound the number of potential units drawn from group A in
a future sample taken from the universe.
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Usage

hypertol.int(x, n, N, m = NULL, alpha = 0.05, P = 0.99,
side = 1, method = c("EX", "LS", "CC"))

Arguments

x The number of units from group A in the sample. Can be a vector, in which case
the sum of x is used.

n The size of the random sample of units selected.

N The population size.

m The quantity of units to be sampled from the universe for a future study. If m =
NULL, then the tolerance limits will be constructed assuming n for this quantity.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of units from group A in future samples of size m to be covered
by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

method The method for calculating the lower and upper confidence bounds, which are
used in the calculation of the tolerance bounds. The default method is "EX",
which is an exact-based method. "LS" is the large-sample method. "CC" gives a
continuity-corrected version of the large-sample method.

Value

hypertol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of units from group A in future samples of size m.

rate The sampling rate determined by n/N.

p.hat The proportion of units in the sample from group A, calculated by x/n.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

Note

As this methodology is built using large-sample theory, if the sampling rate is less than 0.05, then
a warning is generated stating that the results are not reliable. Also, compare the functionality of
this procedure with the acc.samp procedure, which is to determine a minimal acceptance limit for
a particular sampling plan.
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References

Brown, L. D., Cai, T. T., and DasGupta, A. (2001), Interval Estimation for a Binomial Proportion,
Statistical Science, 16, 101–133.

Eichenberger, P., Hulliger, B., and Potterat, J. (2011), Two Measures for Sample Size Determina-
tion, Survey Research Methods, 5, 27–37.

Young, D. S. (2014), Tolerance Intervals for Hypergeometric and Negative Hypergeometric Vari-
ables, Sankhya: The Indian Journal of Statistics, Series B, 77(1), 114–140.

See Also

acc.samp, Hypergeometric

Examples

## 90%/95% 1-sided and 2-sided hypergeometric tolerance
## intervals for a future sample of 30 when the universe
## is of size 100.

hypertol.int(x = 15, n = 50, N = 100, m = 30, alpha = 0.10,
P = 0.95, side = 1, method = "LS")

hypertol.int(x = 15, n = 50, N = 100, m = 30, alpha = 0.10,
P = 0.95, side = 1, method = "CC")

hypertol.int(x = 15, n = 50, N = 100, m = 30, alpha = 0.10,
P = 0.95, side = 2, method = "LS")

hypertol.int(x = 15, n = 50, N = 100, m = 30, alpha = 0.10,
P = 0.95, side = 2, method = "CC")

K.factor Estimating K-factors for Tolerance Intervals Based on Normality

Description

Estimates k-factors for tolerance intervals based on normality.

Usage

K.factor(n, f = NULL, alpha = 0.05, P = 0.99, side = 1,
method = c("HE", "HE2", "WBE", "ELL", "KM", "EXACT",
"OCT"), m = 50)

Arguments

n The (effective) sample size.

f The number of degrees of freedom associated with calculating the estimate of
the population standard deviation. If NULL, then f is taken to be n-1.

alpha The level chosen such that 1-alpha is the confidence level.
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P The proportion of the population to be covered by the tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

method The method for calculating the k-factors. The k-factor for the 1-sided toler-
ance intervals is performed exactly and thus is the same for the chosen method.
"HE" is the Howe method and is often viewed as being extremely accurate, even
for small sample sizes. "HE2" is a second method due to Howe, which per-
forms similarly to the Weissberg-Beatty method, but is computationally sim-
pler. "WBE" is the Weissberg-Beatty method (also called the Wald-Wolfowitz
method), which performs similarly to the first Howe method for larger sample
sizes. "ELL" is the Ellison correction to the Weissberg-Beatty method when f is
appreciably larger than n^2. A warning message is displayed if f is not larger
than n^2. "KM" is the Krishnamoorthy-Mathew approximation to the exact solu-
tion, which works well for larger sample sizes. "EXACT" computes the k-factor
exactly by finding the integral solution to the problem via the integrate func-
tion. Note the computation time of this method is largely determined by m.
"OCT" is the Owen approach to compute the k-factor when controlling the tails
so that there is not more than (1-P)/2 of the data in each tail of the distribution.

m The maximum number of subintervals to be used in the integrate function.
This is necessary only for method = "EXACT" and method = "OCT". The larger
the number, the more accurate the solution. Too low of a value can result in
an error. A large value can also cause the function to be slow for method =
"EXACT".

Value

K.factor returns the k-factor for tolerance intervals based on normality with the arguments speci-
fied above.

Note

For larger sample sizes, there may be some accuracy issues with the 1-sided calculation since it
depends on the noncentral t-distribution. The code is primarily intended to be used for moderate
values of the noncentrality parameter. It will not be highly accurate, especially in the tails, for large
values. See TDist for further details.

References

Ellison, B. E. (1964), On Two-Sided Tolerance Intervals for a Normal Distribution, Annals of Math-
ematical Statistics, 35, 762–772.

Howe, W. G. (1969), Two-Sided Tolerance Limits for Normal Populations - Some Improvements,
Journal of the American Statistical Association, 64, 610–620.

Krishnamoorthy, K. and Mathew, T. (2009), Statistical Tolerance Regions: Theory, Applications,
and Computation, Wiley.

Odeh, R. E. and Owen, D. B. (1980), Tables for Normal Tolerance Limits, Sampling Plans, and
Screening, Marcel-Dekker.
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Owen, D. B. (1964), Controls of Percentages in Both Tails of the Normal Distribution, Technomet-
rics, 6, 377-387.

Wald, A. and Wolfowitz, J. (1946), Tolerance Limits for a Normal Distribution, Annals of the
Mathematical Statistics, 17, 208–215.

Weissberg, A. and Beatty, G. (1969), Tables of Tolerance Limit Factors for Normal Distributions,
Technometrics, 2, 483–500.

See Also

integrate, K.table, normtol.int, TDist

Examples

## Showing the k-factor under the Howe, Weissberg-Beatty,
## and exact estimation methods.

K.factor(10, P = 0.95, side = 2, method = "HE")
K.factor(10, P = 0.95, side = 2, method = "WBE")
K.factor(10, P = 0.95, side = 2, method = "EXACT", m = 20)

K.factor.sim Estimating K-factors for Simultaneous Tolerance Intervals Based on
Normality

Description

Estimates k-factors for simultaneous tolerance intervals based on normality.

Usage

K.factor.sim(n, l = NULL, alpha = 0.05, P = 0.99, side = 1,
method = c("EXACT", "BONF"), m = 50)

Arguments

n If method = "EXACT", this is the sample size of each of the l groups. If method
= "BONF", then n can be a vector of different sample sizes for the l groups.

l The number of normal populations for which the k-factors will be constructed
simultaneously. If NULL, then it is taken to be the length of n.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by the tolerance interval.

side Whether a k-factor for a 1-sided or 2-sided tolerance interval is required (deter-
mined by side = 1 or side = 2, respectively).



K.factor.sim 41

method The method for calculating the k-factors. "EXACT" is an exact method that can
be used when all l groups have the same sample size. "BONF" is an approximate
method using the Bonferroni inequality, which can be used when the l groups
have different sample sizes.

m The maximum number of subintervals to be used in the integrate function.
This is necessary only for method = "EXACT". The larger the number, the more
accurate the solution. Too low of a value can result in an error. A large value
can also cause the function to be slow for method = "EXACT".

Value

K.factor returns the k-factor for simultaneous tolerance intervals based on normality with the
arguments specified above.

Note

For larger combinations of n and l when side = 2 and method = "EXACT", the calculation can be
slow. For larger sample sizes when method = "BONF", there may be some accuracy issues with the 1-
sided calculation since it depends on the noncentral t-distribution. The code is primarily intended to
be used for moderate values of the noncentrality parameter. It will not be highly accurate, especially
in the tails, for large values. See TDist for further details.

Thanks to Andrew Landgraf for providing the basic code for the method = "EXACT" procedure.

References

Krishnamoorthy, K. and Mathew, T. (2009), Statistical Tolerance Regions: Theory, Applications,
and Computation, Wiley.

Mee, R. W. (1990), Simultaneous Tolerance Intervals for Normal Populations with Common Vari-
ance, Technometrics, 32, 83-92.

See Also

integrate, K.factor

Examples

## Reproducing part of Table B5 from Krishnamoorthy and
## Mathew (2009).

n_sizes <- c(2:20, seq(30, 100, 10))
l_sizes <- 2:10
KM_table <- sapply(1:length(l_sizes), function(i)

sapply(1:length(n_sizes), function(j)
round(K.factor.sim(n = n_sizes[j],
l = l_sizes[i], side=1, alpha = 0.1,
P = 0.9),3)))

dimnames(KM_table) <- list(n = n_sizes, l = l_sizes)
KM_table
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K.table Tables of K-factors for Tolerance Intervals Based on Normality

Description

Tabulated summary of k-factors for tolerance intervals based on normality. The user can specify
multiple values for each of the three inputs.

Usage

K.table(n, alpha, P, side = 1, f = NULL, method = c("HE",
"HE2", "WBE", "ELL", "KM", "EXACT", "OCT"), m = 50,
by.arg = c("n", "alpha", "P"))

Arguments

n A vector of (effective) sample sizes.

alpha The level chosen such that 1-alpha is the confidence level. Can be a vector.

P The proportion of the population to be covered by this tolerance interval. Can
be a vector.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

f The number of degrees of freedom associated with calculating the estimate of
the population standard deviation. If NULL, then f is taken to be n-1. Only a
single value can be specified for f.

method The method for calculating the k-factors. The k-factor for the 1-sided toler-
ance intervals is performed exactly and thus is the same for the chosen method.
"HE" is the Howe method and is often viewed as being extremely accurate, even
for small sample sizes. "HE2" is a second method due to Howe, which per-
forms similarly to the Weissberg-Beatty method, but is computationally sim-
pler. "WBE" is the Weissberg-Beatty method (also called the Wald-Wolfowitz
method), which performs similarly to the first Howe method for larger sample
sizes. "ELL" is the Ellison correction to the Weissberg-Beatty method when f is
appreciably larger than n^2. A warning message is displayed if f is not larger
than n^2. "KM" is the Krishnamoorthy-Mathew approximation to the exact solu-
tion, which works well for larger sample sizes. "EXACT" computes the k-factor
exactly by finding the integral solution to the problem via the integrate func-
tion. Note the computation time of this method is largely determined by m.
"OCT" is the Owen approach to compute the k-factor when controlling the tails
so that there is not more than (1-P)/2 of the data in each tail of the distribution.

m The maximum number of subintervals to be used in the integrate function.
This is necessary only for method = "EXACT" and method = "OCT". The larger
the number, the more accurate the solution. Too low of a value can result in
an error. A large value can also cause the function to be slow for method =
"EXACT".
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by.arg How you would like the output organized. If by.arg = "n", then the output pro-
vides a list of matrices sorted by the values specified in n. The matrices have
rows corresponding to the values specified by 1-alpha and columns correspond-
ing to the values specified by P. If by.arg = "alpha", then the output provides
a list of matrices sorted by the values specified in 1-alpha. The matrices have
rows corresponding to the values specified by n and columns corresponding to
the values specified by P. If by.arg = "P", then the output provides a list of ma-
trices sorted by the values specified in P. The matrices have rows corresponding
to the values specified by 1-alpha and columns corresponding to the values
specified by n.

Details

The method used for estimating the k-factors is that due to Howe as it is generally viewed as more
accurate than the Weissberg-Beatty method.

Value

K.table returns a list with a structure determined by the argument by.arg described above.

References

Howe, W. G. (1969), Two-Sided Tolerance Limits for Normal Populations - Some Improvements,
Journal of the American Statistical Association, 64, 610–620.

Weissberg, A. and Beatty, G. (1969), Tables of Tolerance Limit Factors for Normal Distributions,
Technometrics, 2, 483–500.

See Also

K.factor

Examples

## Tables generated for each value of the sample size.

K.table(n = seq(50, 100, 10), alpha = c(0.01, 0.05, 0.10),
P = c(0.90, 0.95, 0.99), by.arg = "n")

## Tables generated for each value of the confidence level.

K.table(n = seq(50, 100, 10), alpha = c(0.01, 0.05, 0.10),
P = c(0.90, 0.95, 0.99), by.arg = "alpha")

## Tables generated for each value of the coverage proportion.

K.table(n = seq(50, 100, 10), alpha = c(0.01, 0.05, 0.10),
P = c(0.90, 0.95, 0.99), by.arg = "P")
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laptol.int Laplace Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for data distributed according to a Laplace distribu-
tion.

Usage

laptol.int(x, alpha = 0.05, P = 0.99, side = 1)

Arguments

x A vector of data which is distributed according to a Laplace distribution.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

Value

laptol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

References

Bain, L. J. and Engelhardt, M. (1973), Interval Estimation for the Two Parameter Double Exponen-
tial Distribution, Technometrics, 15, 875–887.

Examples

## First generate data from a Laplace distribution with location
## parameter 70 and scale parameter 3.

set.seed(100)
tmp <- runif(40)
x <- rep(70, 40) - sign(tmp - 0.5)*rep(3, 40)*

log(2*ifelse(tmp < 0.5, tmp, 1-tmp))
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## 95%/90% 1-sided Laplace tolerance intervals for the sample
## of size 40 generated above.

out <- laptol.int(x = x, alpha = 0.05, P = 0.90, side = 1)
out

plottol(out, x, plot.type = "hist", side = "two",
x.lab = "Laplace Data")

logistol.int Logistic (or Log-Logistic) Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for data distributed according to a logistic or log-
logistic distribution.

Usage

logistol.int(x, alpha = 0.05, P = 0.99, log.log = FALSE,
side = 1, method = c("HALL", "BE"))

Arguments

x A vector of data which is distributed according to a logistic or log-logistic dis-
tribution.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

log.log If TRUE, then the data is considered to be from a log-logistic distribution, in
which case the output gives tolerance intervals for the log-logistic distribution.
The default is FALSE.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

method The method for calculating the tolerance limits. "HALL" is the method due to
Hall, which can be numerically unstable (see below for more information). "BE"
is the method due to Bain and Englehardt, which is typically more reliable.

Details

Recall that if the random variable X is distributed according to a log-logistic distribution, then
the random variable Y = ln(X) is distributed according to a logistic distribution. For method =
"HALL", the method due to Hall (1975) is implemented. This, however, can have numerical insta-
bilities due to taking square roots of negative numbers in the calculation, thus leading to two-sided
tolerance limits where the upper tolerance limit is smaller than the lower tolerance limit. method =
"BE" calculates the limits using the method due to Bain and Englehardt (1991), which tends to be
more reliable.
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Value

logistol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

References

Bain, L. and Englehardt, M. (1991), Statistical Analysis of Reliability and Life Testing Models:
Theory and Methods, Second Edition, Marcel Dekker, Inc.

Balakrishnan, N. (1992), Handbook of the Logistic Distribution, Marcel Dekker, Inc.

Hall, I. J. (1975), One-Sided Tolerance Limits for a Logistic Distribution Based on Censored Sam-
ples, Biometrics, 31, 873–880.

See Also

Logistic

Examples

## 90%/95% 1-sided logistic tolerance intervals for a sample
## of size 20.

set.seed(100)
x <- rlogis(20, 5, 1)
out <- logistol.int(x = x, alpha = 0.10, P = 0.95,

log.log = FALSE, side = 1)
out

plottol(out, x, plot.type = "control", side = "two",
x.lab = "Logistic Data")

mvregtol.region Multivariate (Multiple) Linear Regression Tolerance Regions

Description

Determines the appropriate tolerance factor for computing multivariate (multiple) linear regression
tolerance regions based on Monte Carlo simulation.
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Usage

mvregtol.region(mvreg, new.x = NULL, alpha = 0.05, P = 0.99,
B = 1000)

Arguments

mvreg A multivariate (multiple) linear regression fit, having class mlm.

new.x An optional data frame of new values for which to approximate k-factors. This
must be a data frame with named columns that match those in the data frame
used for the mvreg fitted object.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance region.

B The number of iterations used for the Monte Carlo algorithm which determines
the tolerance factor. The number of iterations should be at least as large as the
default value of 1000.

Details

A basic sketch of how the algorithm works is as follows:

(1) Generate independent chi-square random variables and Wishart random matrices.

(2) Compute the eigenvalues of the randomly generated Wishart matrices.

(3) Iterate the above steps to generate a set of B sample values such that the 100(1-alpha)-th
percentile is an approximate tolerance factor.

Value

mvregtol.region returns a matrix where the first column is the k-factor, the next q columns are
the estimated responses from the least squares fit, and the final m columns are the predictor values.
The first n rows of the matrix pertain to the raw data as specified by y and x. If values for new.x are
specified, then there is one additional row appended to this output for each row in the matrix new.x.

Note

As of tolerance version 2.0.0, the arguments to this function have changed. This function no longer
depends on inputted y and x matrices or an int argument. Instead, the function requires mvreg,
which is of class "mlm", and provides all of the necessary components for the way the output is
formatted. Also, new.x must now be a data frame with columns matching those from the data
frame used in the mvreg fitted object.

References

Anderson, T. W. (2003) An Introduction to Multivariate Statistical Analysis, Third Edition, Wiley.

Krishnamoorthy, K. and Mathew, T. (2009), Statistical Tolerance Regions: Theory, Applications,
and Computation, Wiley.

Krishnamoorthy, K. and Mondal, S. (2008), Tolerance Factors in Multiple and Multivariate Linear
Regressions, Communications in Statistics - Simulation and Computation, 37, 546–559.
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Examples

## 95%/95% multivariate regression tolerance factors using
## a fertilizer data set presented in Anderson (2003, p. 374).

grain <- c(40, 17, 9, 15, 6, 12, 5, 9)
straw <- c(53, 19, 10, 29, 13, 27, 19, 30)
fert <- c(24, 11, 5, 12, 7, 14, 11, 18)
DF <- data.frame(grain,straw,fert)
new.x <- data.frame(fert = c(10, 15, 20))
mvreg <- lm(cbind(grain, straw) ~ fert + I(fert^2), data = DF)

set.seed(100)
out <- mvregtol.region(mvreg, new.x = new.x, alpha = 0.05,

P = 0.95, B = 5000)
out

mvtol.region Multivariate Normal Tolerance Regions

Description

Determines the appropriate tolerance factor for computing multivariate normal tolerance regions
based on Monte Carlo methods or other approximations.

Usage

mvtol.region(x, alpha = 0.05, P = 0.99, B = 1000, M = 1000,
method = c("KM", "AM", "GM", "HM", "MHM", "V11",
"HM.V11", "MC"))

Arguments

x An nxp matrix of data assumed to be drawn from a p-dimensional multivariate
normal distribution. n pertains to the sample size.

alpha The level chosen such that 1-alpha is the confidence level. A vector of alpha
values may be specified.

P The proportion of the population to be covered by this tolerance region. A vector
of P values may be specified.

B The number of iterations used for the Monte Carlo algorithms (i.e., when method
= "KM" or "MC"), which determines the tolerance factor. The number of iterations
should be at least as large as the default value of 1000.

M The number of iterations used for the inner loop of the Monte Carlo algorithm
specified through method = "MC". The number of iterations should be at least as
large as the default value of 1000. Note that this is not required for method =
"KM" since that algorithm handles the eigenvalues differently in the estimation
of the tolerance factor.
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method The method for estimating the tolerance factors. "KM" is the Krishnamoorthy-
Mondal method, which is the method implemented in previous versions of the
tolerance package. It is one of the more accurate methods available. "AM" is
an approximation method based on the arithmetic mean. "GM" is an approxima-
tion method based on the geometric mean. "HM" is an approximation method
based on the harmonic mean. "MHM" is a modified approach based on the har-
monic mean. "V11" is a method that utilizes a certain partitioning of a Wishart
random matrix for deriving an approximate tolerance factor. "HM.V11" is a hy-
brid method of the "HM" and "V11" methods. "MC" is a simple Monte Carlo
approach to estimating the tolerance factor, which is computationally expensive
as the values of B and M increase.

Details

All of the methods are outlined in the references that we provided. In practice, we recommend
using the Krishnamoorthy-Mondal approach. A basic sketch of how the Krishnamoorthy-Mondal
algorithm works is as follows:

(1) Generate independent chi-square random variables and Wishart random matrices.

(2) Compute the eigenvalues of the randomly generated Wishart matrices.

(3) Iterate the above steps to generate a set of B sample values such that the 100(1-alpha)-th
percentile is an approximate tolerance factor.

Value

mvtol.region returns a matrix where the rows pertain to each confidence level 1-alpha specified
and the columns pertain to each proportion level P specified.

References

Krishnamoorthy, K. and Mathew, T. (1999), Comparison of Approximation Methods for Computing
Tolerance Factors for a Multivariate Normal Population, Technometrics, 41, 234–249.

Krishnamoorthy, K. and Mondal, S. (2006), Improved Tolerance Factors for Multivariate Normal
Distributions, Communications in Statistics - Simulation and Computation, 35, 461–478.

Examples

## 90%/90% bivariate normal tolerance region.

set.seed(100)
x1 <- rnorm(100, 0, 0.2)
x2 <- rnorm(100, 0, 0.5)
x <- cbind(x1, x2)

out1 <- mvtol.region(x = x, alpha = 0.10, P = 0.90, B = 1000,
method = "KM")

out1
plottol(out1, x)

## 90%/90% trivariate normal tolerance region.
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set.seed(100)
x1 <- rnorm(100, 0, 0.2)
x2 <- rnorm(100, 0, 0.5)
x3 <- rnorm(100, 5, 1)
x <- cbind(x1, x2, x3)
mvtol.region(x = x, alpha = c(0.10, 0.05, 0.01),

P = c(0.90, 0.95, 0.99), B = 1000, method = "KM")

out2 <- mvtol.region(x = x, alpha = 0.10, P = 0.90, B = 1000,
method = "KM")

out2
plottol(out2, x)

negbintol.int Negative Binomial Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for negative binomial random variables. From a
statistical quality control perspective, these limits use the number of failures that occur to reach n
successes to bound the number of failures for a specified amount of future successes (m).

Usage

negbintol.int(x, n, m = NULL, alpha = 0.05, P = 0.99,
side = 1, method = c("LS", "WU", "CB",
"CS", "SC", "LR", "SP", "CC"))

Arguments

x The total number of failures that occur from a sample of size n. Can be a vector
of length n, in which case the sum of x is computed.

n The target number of successes (sometimes called size) for each trial.

m The target number of successes in a future lot for which the tolerance limits will
be calculated. If m = NULL, then the tolerance limits will be constructed assuming
n for the target number of future successes.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the defective (or acceptable) units in future samples of size m
to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

method The method for calculating the lower and upper confidence bounds, which are
used in the calculation of the tolerance bounds. The default method is "LS",
which is the large-sample method based on the MLE. "WU" is a Wald-type in-
terval based on the UMVUE of the negative binomial proportion. "CB" is the
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Casella-Berger exact method. "CS" is a method based on chi-square percentiles.
"SC" is the score method. "LR" is a likelihood ratio-based method. "SP" is a
method using a saddlepoint approximation for the confidence intervals. "CC"
gives a continuity-corrected version of the large-sample method and is appro-
priate when n is large. More information on these methods can be found in the
"References".

Details

This function takes the approach for Poisson and binomial random variables developed in Hahn and
Chandra (1981) and applies it to the negative binomial case.

Value

negbintol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of defective (or acceptable) units in future samples of size m.

pi.hat The probability of success in each trial, calculated by n/(n+x).

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

Note

Recall that the geometric distribution is the negative binomial distribution where the size is 1. There-
fore, the case when n = m = 1 will provide tolerance limits for a geometric distribution.

References

Casella, G. and Berger, R. L. (1990), Statistical Inference, Duxbury Press.

Hahn, G. J. and Chandra, R. (1981), Tolerance Intervals for Poisson and Binomial Variables, Jour-
nal of Quality Technology, 13, 100–110.

Tian, M., Tang, M. L., Ng, H. K. T., and Chan, P. S. (2009), A Comparative Study of Confidence
Intervals for Negative Binomial Proportions, Journal of Statistical Computation and Simulation,
79, 241–249.

Young, D. S. (2014), A Procedure for Approximate Negative Binomial Tolerance Intervals, Journal
of Statistical Computation and Simulation, 84, 438–450.

See Also

NegBinomial, umatol.int
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Examples

## Comparison of 95%/99% 1-sided tolerance limits with
## 50 failures before 10 successes are reached.

negbintol.int(x = 50, n = 10, side = 1, method = "LS")
negbintol.int(x = 50, n = 10, side = 1, method = "WU")
negbintol.int(x = 50, n = 10, side = 1, method = "CB")
negbintol.int(x = 50, n = 10, side = 1, method = "CS")
negbintol.int(x = 50, n = 10, side = 1, method = "SC")
negbintol.int(x = 50, n = 10, side = 1, method = "LR")
negbintol.int(x = 50, n = 10, side = 1, method = "SP")
negbintol.int(x = 50, n = 10, side = 1, method = "CC")

## 95%/99% 1-sided tolerance limits and 2-sided tolerance
## interval for the same setting above, but when we are
## interested in a future experiment that requires 20 successes
## be reached for each trial.

negbintol.int(x = 50, n = 10, m = 20, side = 1)
negbintol.int(x = 50, n = 10, m = 20, side = 2)

NegHypergeometric The Negative Hypergeometric Distribution

Description

Density, distribution function, quantile function, and random generation for the negative hypergeo-
metric distribution.

Usage

dnhyper(x, m, n, k, log = FALSE)
pnhyper(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
qnhyper(p, m, n, k, lower.tail = TRUE, log.p = FALSE)
rnhyper(nn, m, n, k)

Arguments

x, q Vector of quantiles representing the number of trials until k successes have oc-
curred (e.g., until k white balls have been drawn from an urn without replace-
ment).

m The number of successes in the population (e.g., the number of white balls in
the urn).

n The population size (e.g., the total number of balls in the urn).

k The number of successes (e.g., white balls) to achieve with the sample.

p Vector of probabilities, which must be between 0 and 1.
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nn The number of observations. If length>1, then the length is taken to be the
number required.

log, log.p Logical vectors. If TRUE, then probabilities are given as log(p).

lower.tail Logical vector. If TRUE, then probabilities are P [X ≤ x], else P [X > x].

Details

A negative hypergeometric distribution (sometimes called the inverse hypergeometric distribution)
models the total number of trials until k successes occur. Compare this to the negative binomial
distribution, which models the number of failures that occur until a specified number of successes
has been reached. The negative hypergeometric distribution has density

p(x) =

(
x−1
k−1

)(
n−x
m−k

)(
n
m

)
for x = k, k + 1, ..., n−m+ k.

Value

dnhyper gives the density, pnhyper gives the distribution function, qnhyper gives the quantile
function, and rnhyper generates random deviates.

Invalid arguments will return value NaN, with a warning.

References

Wilks, S. S. (1963), Mathematical Statistics, Wiley.

See Also

runif and .Random.seed about random number generation.

Examples

## Randomly generated data from the negative hypergeometric
## distribution.

set.seed(100)
x <- rnhyper(nn = 1000, m = 15, n = 40, k = 10)
hist(x, main = "Randomly Generated Data", prob = TRUE)

x.1 = sort(x)
y <- dnhyper(x = x.1, m = 15, n = 40, k = 10)
lines(x.1, y, col = 2, lwd = 2)

plot(x.1, pnhyper(q = x.1, m = 15, n = 40, k = 10),
type = "l", xlab = "x", ylab = "Cumulative Probabilities")

qnhyper(p = 0.20, m = 15, n = 40, k = 10, lower.tail = FALSE)
qnhyper(p = 0.80, m = 15, n = 40, k = 10)
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neghypertol.int Negative Hypergeometric Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for negative hypergeometric random variables. When
sampling without replacement, these limits are on the total number of expected draws in a future
sample in order to achieve a certain number from group A (e.g., "black balls" in an urn).

Usage

neghypertol.int(x, n, N, m = NULL, alpha = 0.05, P = 0.99,
side = 1, method = c("EX", "LS", "CC"))

Arguments

x The number of units drawn in order to achieve n successes. Can be a vector, in
which case the sum of x is used.

n The target number of successes in the sample drawn (e.g., the number of "black
balls" you are to draw in the sample).

N The population size (e.g., the total number of balls in the urn).
m The target number of successes to be sampled from the universe for a future

study. If m = NULL, then the tolerance limits will be constructed assuming n for
this quantity.

alpha The level chosen such that 1-alpha is the confidence level.
P The proportion of units from group A in future samples of size m to be covered

by this tolerance interval.
side Whether a 1-sided or 2-sided tolerance interval is required (determined by side

= 1 or side = 2, respectively).
method The method for calculating the lower and upper confidence bounds, which are

used in the calculation of the tolerance bounds. The default method is "EX",
which is an exact-based method. "LS" is the large-sample method. "CC" gives a
continuity-corrected version of the large-sample method.

Value

neghypertol.int returns a data frame with items:

alpha The specified significance level.
P The proportion of units from group A in future samples of size m.
rate The sampling rate determined by x/N.
p.hat The proportion of units in the sample from group A, calculated by n/x.
1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.
1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.
2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.
2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.
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Note

As this methodology is built using large-sample theory, if the sampling rate is less than 0.05, then a
warning is generated stating that the results are not reliable.

References

Khan, R. A. (1994), A Note on the Generating Function of a Negative Hypergeometric Distribution,
Sankhya: The Indian Journal of Statistics, Series B, 56, 309–313.

Young, D. S. (2014), Tolerance Intervals for Hypergeometric and Negative Hypergeometric Vari-
ables, Sankhya: The Indian Journal of Statistics, Series B, 77(1), 114–140.

See Also

acc.samp, NegHypergeometric

Examples

## 90%/95% 2-sided negative hypergeometric tolerance
## intervals for a future number of 20 successes when
## the universe is of size 100. The estimates are
## based on having drawn 50 in another sample to achieve
## 20 successes.

neghypertol.int(50, 20, 100, m = 20, alpha = 0.05,
P = 0.95, side = 2, method = "LS")

nlregtol.int Nonlinear Regression Tolerance Bounds, Version 2

Description

Provides 1-sided or 2-sided nonlinear regression tolerance bounds.

Usage

nlregtol.int(formula, xy.data = data.frame(), x.new = NULL,
side = 1, alpha = 0.05, P = 0.99, maxiter = 50,
new = FALSE, ...)

Arguments

formula A nonlinear model formula including variables and parameters.

xy.data A data frame in which to evaluate the formulas in formula. The first column of
xy.data must be the response variable.

x.new Any new levels of the predictor(s) for which to report the tolerance bounds. The
number of columns must be 1 less than the number of columns for xy.data.
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side Whether a 1-sided or 2-sided tolerance bound is required (determined by side
= 1 or side = 2, respectively).

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by the tolerance bound(s).

maxiter A positive integer specifying the maximum number of iterations that the nonlin-
ear least squares routine (nls) should run.

new When new = TRUE, the function shows updated version of outcomes.

... Optional arguments passed to nls when estimating the nonlinear regression
equation.

Details

It is highly recommended that the user specify starting values for the nls routine.

Value

npregtol.int2 returns a list with items:

tol Data frame of original response varible y, fitted values y.hat, corresponding
tolerance limits. The data frame is ordered by X values. If there are new data for
prediction, predicted values are attached in the end.

alpha.P.side Model specifications of critical level, content level and side.

reg.type Type of regression model.

model The linear regression model fitted.

newdata X values of new data for prediction.
xy.data.original

Original data frame

References

Wallis, W. A. (1951), Tolerance Intervals for Linear Regression, in Second Berkeley Symposium on
Mathematical Statistics and Probability, ed. J. Neyman, Berkeley: University of CA Press, 43–51.

Young, D. S. (2013), Regression Tolerance Intervals, Communications in Statistics - Simulation and
Computation, 42, 2040–2055.

See Also

nls, nlregtol.int

Examples

## 95%/95% 2-sided nonlinear regression tolerance bounds
## for a sample of size 50.
set.seed(100)
x <- runif(50, 5, 45)
f1 <- function(x, b1, b2) b1 + (0.49 - b1)*exp(-b2*(x - 8)) +

rnorm(50, sd = 0.01)
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y <- f1(x, 0.39, 0.11)
formula <- as.formula(y ~ b1 + (0.49 - b1)*exp(-b2*(x - 8)))
out1 <- nlregtol.int(formula = formula,

xy.data = data.frame(cbind(y, x)),
x.new=c(10,20), side = 2,
alpha = 0.05, P = 0.95 , new = TRUE)

out1
#########
set.seed(100)
x1 <- runif(50, 5, 45)
x2 <- rnorm(50, 0, 10)
f1 <- function(x1, x2, b1, b2) {(0.49 - b1)*exp(-b2*(x1 + x2 - 8)) +

rnorm(50, sd = 0.01)}
y <- f1(x1 , x2 , 0.25 , 0.39)
formula <- as.formula(y ~ (0.49 - b1)*exp(-b2*(x1 + x2 - 8)))
out2 <- nlregtol.int(formula = formula,

xy.data = data.frame(cbind(y, x1 , x2)),
x.new=cbind(c(10,20) , c(47 , 53)), side = 2,
alpha = 0.05, P = 0.95 , new = TRUE)

out2

norm.OC Operating Characteristic (OC) Curves for K-Factors for Tolerance In-
tervals Based on Normality

Description

Provides OC-type curves to illustrate how values of the k-factors for normal tolerance intervals,
confidence levels, and content levels change as a function of the sample size.

Usage

norm.OC(k = NULL, alpha = NULL, P = NULL, n, side = 1,
method = c("HE", "HE2", "WBE", "ELL", "KM", "EXACT",
"OCT"), m = 50)

Arguments

k If wanting OC curves where the confidence level or content level is on the y-
axis, then a single positive value of k must be specified. This would be the target
k-factor for the desired tolerance interval. If k = NULL, then OC curves will be
constructed where the k-factor value is found for given levels of alpha, P, and
n.

alpha The set of levels chosen such that 1-alpha are confidence levels. If wanting OC
curves where the content level is being calculated, then each curve will corre-
spond to a level in the set of alpha. If a set of P values is specified, then OC
curves will be constructed where the k-factor is found and each curve will cor-
respond to each combination of alpha and P. If alpha = NULL, then OC curves
will be constructed to find the confidence level for given levels of k, P, and n.
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P The set of content levels to be considered. If wanting OC curves where the
confidence level is being calculated, then each curve will correspond to a level
in the set of P. If a set of alpha values is specified, then OC curves will be
constructed where the k-factor is found and each curve will correspond to each
combination of alpha and P. If P = NULL, then OC curves will be constructed to
find the content level for given levels of k, alpha, and n.

n A sequence of sample sizes to consider. This must be a vector of at least length
2 since all OC curves are constructed as functions of n.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

method The method for calculating the k-factors. The k-factor for the 1-sided toler-
ance intervals is performed exactly and thus is the same for the chosen method.
"HE" is the Howe method and is often viewed as being extremely accurate, even
for small sample sizes. "HE2" is a second method due to Howe, which per-
forms similarly to the Weissberg-Beatty method, but is computationally sim-
pler. "WBE" is the Weissberg-Beatty method (also called the Wald-Wolfowitz
method), which performs similarly to the first Howe method for larger sample
sizes. "ELL" is the Ellison correction to the Weissberg-Beatty method when f is
appreciably larger than n^2. A warning message is displayed if f is not larger
than n^2. "KM" is the Krishnamoorthy-Mathew approximation to the exact solu-
tion, which works well for larger sample sizes. "EXACT" computes the k-factor
exactly by finding the integral solution to the problem via the integrate func-
tion. Note the computation time of this method is largely determined by m.
"OCT" is the Owen approach to compute the k-factor when controlling the tails
so that there is not more than (1-P)/2 of the data in each tail of the distribution.

m The maximum number of subintervals to be used in the integrate function,
which is used for the underlying exact method for calculating the normal toler-
ance intervals.

Value

norm.OC returns a figure with the OC curves constructed using the specifications in the arguments.

References

Young, D. S. (2016), Normal Tolerance Interval Procedures in the tolerance Package, The R Journal,
8, 200–212.

See Also

K.factor, normtol.int

Examples

## The three types of OC-curves that can be constructed
## with the norm.OC function.

norm.OC(k = 4, alpha = NULL, P = c(0.90, 0.95, 0.99),
n = 10:20, side = 1)
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norm.OC(k = 4, alpha = c(0.01, 0.05, 0.10), P = NULL,
n = 10:20, side = 1)

norm.OC(k = NULL, P = c(0.90, 0.95, 0.99),
alpha=c(0.01,0.05,0.10), n = 10:20, side = 1)

norm.ss Sample Size Determination for Normal Tolerance Intervals

Description

Provides minimum sample sizes for a future sample size when constructing normal tolerance in-
tervals. Various strategies are available for determining the sample size, including strategies that
incorporate known specification limits.

Usage

norm.ss(x = NULL, alpha = 0.05, P = 0.99, delta = NULL,
P.prime = NULL, side = 1, m = 50, spec = c(NA, NA),
hyper.par = list(mu.0 = NULL, sig2.0 = NULL,
m.0 = NULL, n.0 = NULL), method = c("DIR",
"FW", "YGZO"))

Arguments

x A vector of current data that is distributed according to a normal distribution.
This is only required for method = "YGZO".

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

delta The precision measure for the future tolerance interval as specified under the
Faulkenberry-Weeks method.

P.prime The proportion of the population (greater than P) such that the tolerance interval
of interest will only exceed P.prime by the probability given by delta.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

m The maximum number of subintervals to be used in the integrate function,
which is used for the underlying exact method for calculating the normal toler-
ance intervals.

spec A vector of length 2 given known specification limits. These are required when
method = "DIR" or method = "YGZO". By default, the values are NA. The two
elements of the vector are for the lower and upper specification limits, respec-
tively. If side = 1, then only one of the specification limits must be specified. If
side = 2, then both specification limits must be specified.
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hyper.par Necessary parameter values for the different methods. If method = "DIR" or
method = "YGZO", then mu.0 and sig2.0 must be specified, which correspond
to the assumed population mean and variance of the underlying normal dis-
tribution, which further pertains to the historical data for method = "YGZO". If
method = "YGZO" and the sample size is to be determined using Bayesian normal
tolerance intervals, then this is a required list consisting of the hyperparameters
for the conjugate prior – the hyperparameters for the mean (mu.0 and n.0) and
the hyperparameters for the variance (sig2.0 and m.0).

method The method for performing the sample size determination. "DIR" is the di-
rect method (intended as a simple calculation for planning purposes) where the
mean and standard deviation are taken as truth and the sample size is deter-
mined with respect to the given specification limits. "FW" is for the traditional
Faulkenberry-Weeks approach for sample size determination. "YGZO" is for
the Young-Gordon-Zhu-Olin approach, which incorporates historical data and
specification limits for determining the value of delta and/or P.prime in the
Faulkenberry-Weeks approach. Note that for "YGZO", at least one of delta and
P.prime must be NULL.

Value

norm.ss returns a data frame with items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

delta The user-specified or calculated precision measure. Not returned if method =
"DIR".

P.prime The user-specified or calculated closeness measure. Not returned if method =
"DIR".

n The minimum sample size determined using the conditions specified for this
function.

References

Faulkenberry, G. D. and Weeks, D. L. (1968), Sample Size Determination for Tolerance Limits,
Technometrics, 10, 343–348.

Young, D. S., Gordon, C. M., Zhu, S., and Olin, B. D. (2016), Sample Size Determination Strategies
for Normal Tolerance Intervals Using Historical Data, Quality Engineering, 28, 337–351.

See Also

bayesnormtol.int, Normal, normtol.int

Examples

## Sample size determination for 95%/95% 2-sided normal
## tolerance intervals using the direct method.

set.seed(100)
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norm.ss(alpha = 0.05, P = 0.95, side = 2, spec = c(-3, 3),
method = "DIR", hyper.par = list(mu.0 = 0,
sig2.0 = 1))

normtol.int Normal (or Log-Normal) Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for data distributed according to either a normal
distribution or log-normal distribution.

Usage

normtol.int(x, alpha = 0.05, P = 0.99, side = 1,
method = c("HE", "HE2", "WBE", "ELL", "KM",
"EXACT", "OCT"), m = 50, log.norm = FALSE)

Arguments

x A vector of data which is distributed according to either a normal distribution or
a log-normal distribution.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

method The method for calculating the k-factors. The k-factor for the 1-sided toler-
ance intervals is performed exactly and thus is the same for the chosen method.
"HE" is the Howe method and is often viewed as being extremely accurate, even
for small sample sizes. "HE2" is a second method due to Howe, which per-
forms similarly to the Weissberg-Beatty method, but is computationally sim-
pler. "WBE" is the Weissberg-Beatty method (also called the Wald-Wolfowitz
method), which performs similarly to the first Howe method for larger sample
sizes. "ELL" is the Ellison correction to the Weissberg-Beatty method when f is
appreciably larger than n^2. A warning message is displayed if f is not larger
than n^2. "KM" is the Krishnamoorthy-Mathew approximation to the exact solu-
tion, which works well for larger sample sizes. "EXACT" computes the k-factor
exactly by finding the integral solution to the problem via the integrate func-
tion. Note the computation time of this method is largely determined by m.
"OCT" is the Owen approach to compute the k-factor when controlling the tails
so that there is not more than (1-P)/2 of the data in each tail of the distribution.

m The maximum number of subintervals to be used in the integrate function.
This is necessary only for method = "EXACT" and method = "OCT". The larger
the number, the more accurate the solution. Too low of a value can result in
an error. A large value can also cause the function to be slow for method =
"EXACT".
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log.norm If TRUE, then the data is considered to be from a log-normal distribution, in
which case the output gives tolerance intervals for the log-normal distribution.
The default is FALSE.

Details

Recall that if the random variable X is distributed according to a log-normal distribution, then the
random variable Y = ln(X) is distributed according to a normal distribution.

Value

normtol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

x.bar The sample mean.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

References

Howe, W. G. (1969), Two-Sided Tolerance Limits for Normal Populations - Some Improvements,
Journal of the American Statistical Association, 64, 610–620.

Wald, A. and Wolfowitz, J. (1946), Tolerance Limits for a Normal Distribution, Annals of Mathe-
matical Statistics, 17, 208–215.

Weissberg, A. and Beatty, G. (1969), Tables of Tolerance Limit Factors for Normal Distributions,
Technometrics, 2, 483–500.

See Also

Normal, K.factor

Examples

## 95%/95% 2-sided normal tolerance intervals for a sample
## of size 100.

set.seed(100)
x <- rnorm(100, 0, 0.2)
out <- normtol.int(x = x, alpha = 0.05, P = 0.95, side = 2,

method = "HE", log.norm = FALSE)
out

plottol(out, x, plot.type = "both", side = "two",
x.lab = "Normal Data")
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np.order Sample Size Determination for Tolerance Limits Based on Order
Statistics

Description

For given values of m, alpha, and P, this function solves the necessary sample size such that the r-th
(or (n-s+1)-th) order statistic is the [100(1-alpha)%, 100(P)%] lower (or upper) tolerance limit
(see the Details section below for further explanation). This function can also report all combina-
tions of order statistics for 2-sided intervals.

Usage

np.order(m, alpha = 0.05, P = 0.99, indices = FALSE)

Arguments

m See the Details section below for how m is defined.

alpha 1 minus the confidence level attained when it is desired to cover a proportion P
of the population with the order statistics.

P The proportion of the population to be covered with confidence 1-alpha with
the order statistics.

indices An optional argument to report all combinations of order statistics indices for
the upper and lower limits of the 2-sided intervals. Note that this can only be
calculated when m>1.

Details

For the 1-sided tolerance limits, m=s+r such that the probability is at least 1-alpha that at least the
proportion P of the population is below the (n-s+1)-th order statistic for the upper limit or above
the r-th order statistic for the lower limit. This means for the 1-sided upper limit that r=1, while for
the 1-sided lower limit it means that s=1. For the 2-sided tolerance intervals, m=s+r such that the
probability is at least 1-alpha that at least the proportion P of the population is between the r-th and
(n-s+1)-th order statistics. Thus, all combinations of r>0 and s>0 such that m=s+r are considered.

Value

If indices = FALSE, then a single number is returned for the necessary sample size such that the
r-th (or (n-s+1)-th) order statistic is the [100(1-alpha)%, 100(P)%] lower (or upper) tolerance
limit. If indices = TRUE, then a list is returned with a single number for the necessary sample size
and a matrix with 2 columns where each row gives the pairs of indices for the order statistics for all
permissible [100(1-alpha)%, 100(P)%] 2-sided tolerance intervals.
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References

Hanson, D. L. and Owen, D. B. (1963), Distribution-Free Tolerance Limits Elimination of the
Requirement That Cumulative Distribution Functions Be Continuous, Technometrics, 5, 518–522.

Scheffe, H. and Tukey, J. W. (1945), Non-Parametric Estimation I. Validation of Order Statistics,
Annals of Mathematical Statistics, 16, 187–192.

See Also

nptol.int

Examples

## Only requesting the sample size.

np.order(m = 5, alpha = 0.05, P = 0.95)

## Requesting the order statistics indices as well.

np.order(m = 5, alpha = 0.05, P = 0.95, indices = TRUE)

npbetol.int Nonparametric Beta-Expectation Tolerance Intervals

Description

Provides 1-sided or 2-sided nonparametric (i.e., distribution-free) beta-expectation tolerance inter-
vals for any continuous data set. These are equivalent to nonparametric prediction intervals based
on order statistics.

Usage

npbetol.int(x, Beta = 0.95, side = 1, upper = NULL, lower = NULL)

Arguments

x A vector of data which no distributional assumptions are made. The data is only
assumed to come from a continuous distribution.

Beta The confidence level.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

upper The upper bound of the data. When NULL, then the maximum of x is used.

lower The lower bound of the data. When NULL, then the minimum of x is used.
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Value

nptol.int returns a data frame with items:

Beta The specified confidence level.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

References

Beran, R. and Hall, P. (1993), Interpolated Nonparametric Prediction Intervals and Confidence In-
tervals, Journal of the Royal Statistical Society, Series B, 55, 643–652.

See Also

distfree.est, npregtol.int, nptol.int

Examples

## Nonparametric 90%-expectation tolerance intervals
## for a sample of size 100.

set.seed(100)
x <- rexp(100, 5)
out <- npbetol.int(x = x, Beta = 0.90, side = 2,

upper = NULL, lower = NULL)
out

npmvtol.region Nonparametric Multivariate Hyperrectangular Tolerance Regions

Description

Provides depth-based multivariate central or semi-space nonparametric tolerance regions. These
can be calculated for any continuous multivariate data set. Either (P, 1-alpha) tolerance regions or
beta-expectation tolerance regions can be specified.

Usage

npmvtol.region(x, alpha = NULL, P = NULL, Beta = NULL, depth.fn,
adjust = c("no", "floor", "ceiling"),
type = c("central", "semispace"),
semi.order = list(lower = NULL, center = NULL, upper = NULL),
L = -Inf, U = Inf, ...)
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Arguments

x An nxp matrix of data assumed to be drawn from a p-dimensional multivariate
distribution. n pertains to the sample size.

alpha The level chosen such that 1-alpha is the confidence level. Note that if a (P,
1-alpha) tolerance region is required, then both alpha and P must be specified,
but Beta must be set to NULL.

P The proportion of the population to be covered by this tolerance interval. Note
that if a (P, 1-alpha) tolerance region is required, then both alpha and P must be
specified, but Beta must be set to NULL.

Beta The confidence level for a beta-expectation tolerance region. Note that if a beta-
expectation tolerance region is required, then Beta must be specified, but both
alpha and P must be set to NULL.

depth.fn The data depth function used to perform the ordering of the multivariate data.
Thus function must be coded in such a way that the first argument is multivariate
data for which to calculate the depth values and the second argument is the orig-
inal multivariate sample, x. For the purpose of this tolerance region calculation,
these two arguments should both be the original multivariate sample.

adjust Whether an adjustment should be made during an intermediate calculation for
determining the number of points that need to be included in the multivariate
region. If adjust = "no", the default, then no adjustment is made during the in-
termediate calculation. If adjust = "floor", then the intermediate calculation
is rounded down to the next nearest integer. If adjust = "ceiling", then the
intermediate calculation is rounded up to the next nearest integer.

type The type of multivariate hyperrectangular region to calculate. If type = "central",
then two-sided intervals are reported for each dimension of the data x. If type
= "semispace", then a combination of one-sided intervals and two-sided inter-
vals are reported for the dimensions of x. Which interval is calculated for each
dimension in this latter setting is dictated by the semi.order argument.

semi.order If type = "semispace", then this argument must be specified. This argument
is a list of length 3, such that each element gives the indices of the dimensions
of x for which the type of interval should be calculated. Indices specified for
the element of lower will return one-sided lower limits for those dimensions,
indices specified for the element of center will return two-sided intervals for
those dimensions, and indices specified for the element of upper will return
one-sided upper limits for those dimensions.

L If type = "semispace", these are the lower limits for any dimensions for which
one requests one-sided upper limits.

U If type = "semispace", these are the upper limits for any dimensions for which
one requests one-sided lower limits.

... Additional arguments passed to the depth.fn function.

Value

npmvtol.region returns a px2 matrix where the columns give the lower and upper limits, respec-
tively, of the multivariate hyperrectangular tolerance region.
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References

Young, D. S. and Mathew, T. (2020), Nonparametric Hyperrectangular Tolerance and Prediction
Regions for Setting Multivariate Reference Regions in Laboratory Medicine, Statistical Methods in
Medical Research, 29, 3569–3585.

See Also

distfree.est, mvtol.region, npregtol.int

Examples

## 90%/95% semi-space tolerance region for a sample
## of size 20 generated from a multivariate normal
## distribution. The mdepth function below is not
## a true depth function, but used only for
## illustrative purposes.

mdepth <- function(pts, x){
mahalanobis(pts, center = rep(0, 3),

cov = diag(1, 3))
}

set.seed(100)
x <- cbind(rnorm(100), rnorm(100), rnorm(100))
out <- npmvtol.region(x = x, alpha = 0.10, P = 0.95, depth.fn = mdepth,

type = "semispace", semi.order = list(lower = 2,
center = 3, upper = 1))

out

npregtol.int Nonparametric Regression Tolerance Bounds

Description

Provides 1-sided or 2-sided nonparametric regression tolerance bounds.

Usage

npregtol.int(x, y, y.hat, side = 1, alpha = 0.05, P = 0.99,
method = c("WILKS", "WALD", "HM"), upper = NULL,
lower = NULL, new = FALSE)

Arguments

x A vector of values for the predictor variable. Currently, this function is only
capable of handling a single predictor.

y A vector of values for the response variable.

y.hat A vector of fitted values extracted from a nonparametric smoothing routine.
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side Whether a 1-sided or 2-sided tolerance bound is required (determined by side
= 1 or side = 2, respectively).

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by the tolerance bound(s).

method The method for determining which indices of the ordered residuals will be used
for the tolerance bounds. "WILKS", "WALD", and "HM" are each described in
nptol.int. However, since only one tolerance bound can actually be reported
for this procedure, only the first tolerance bound will be returned. Note that this
is not an issue when method = "WILKS" is used as it only produces one set of
tolerance bounds.

upper The upper bound of the data. When NULL, then the maximum of x is used.

lower The lower bound of the data. When NULL, then the minimum of x is used.

new When new = TRUE, the function shows updated version of outcomes.

Value

npregtol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of the population covered by the tolerance bound(s).

x The values of the predictor variable.

y The values of the response variable.

y.hat The predicted value of the response for the fitted nonparametric smoothing rou-
tine.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

References

Young, D. S. (2013), Regression Tolerance Intervals, Communications in Statistics - Simulation and
Computation, 42, 2040–2055.

See Also

loess, nptol.int, spline

Examples

## 95%/95% 2-sided nonparametric regression tolerance bounds
## for a sample of size 50.

set.seed(100)
x <- runif(50, 5, 45)
f1 <- function(x, b1, b2) b1 + (0.49 - b1)*exp(-b2*(x - 8)) +
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rnorm(50, sd = 0.01)
y <- f1(x, 0.39, 0.11)
y.hat <- loess(y~x)$fit
out <- npregtol.int(x = x, y = y, y.hat = y.hat, side = 2,

alpha = 0.05, P = 0.95, method = "WILKS",
new = TRUE)

out

library(plotly)
plotly_regtol(tol.out = out , x = x , y = y)

nptol.int Nonparametric Tolerance Intervals

Description

Provides 1-sided or 2-sided nonparametric (i.e., distribution-free) tolerance intervals for any con-
tinuous data set.

Usage

nptol.int(x, alpha = 0.05, P = 0.99, side = 1,
method = c("WILKS", "WALD", "HM", "YM"),
upper = NULL, lower = NULL)

Arguments

x A vector of data which no distributional assumptions are made. The data is only
assumed to come from a continuous distribution.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

method The method for determining which indices of the ordered observations will be
used for the tolerance intervals. "WILKS" is the Wilks method, which produces
tolerance bounds symmetric about the observed center of the data by using the
beta distribution. "WALD" is the Wald method, which produces (possibly) multi-
ple tolerance bounds for side = 2 (each having at least the specified confidence
level), but is the same as method = "WILKS" for side = 1. "HM" is the Hahn-
Meeker method, which is based on the binomial distribution, but the upper and
lower bounds may exceed the minimum and maximum of the sample data. For
side = 2, this method will yield two intervals if an odd number of observations
are to be trimmed from each side. "YM" is the Young-Mathew method for per-
forming interpolation or extrapolation based on the order statistics. See below
for more information on this method.
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upper The upper bound of the data. When NULL, then the maximum of x is used. If
method = "YM" and extrapolation is performed, then upper will be greater than
the maximum.

lower The lower bound of the data. When NULL, then the minimum of x is used. If
method = "YM" and extrapolation is performed, then lower will be less than the
minimum.

Details

For the Young-Mathew method, interpolation or extrapolation is performed. When side = 1, two
intervals are given: one based on linear interpolation/extrapolation of order statistics (OS-Based)
and one based on fractional order statistics (FOS-Based). When side = 2, only an interval based on
linear interpolation/extrapolation of order statistics is given.

Value

nptol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

References

Bury, K. (1999), Statistical Distributions in Engineering, Cambridge University Press.

Hahn, G. J. and Meeker, W. Q. (1991), Statistical Intervals: A Guide for Practitioners, Wiley-
Interscience.

Wald, A. (1943), An Extension of Wilks’ Method for Setting Tolerance Limits, The Annals of
Mathematical Statistics, 14, 45–55.

Wilks, S. S. (1941), Determination of Sample Sizes for Setting Tolerance Limits, The Annals of
Mathematical Statistics, 12, 91–96.

Young, D. S. and Mathew, T. (2014), Improved Nonparametric Tolerance Intervals Based on Inter-
polated and Extrapolated Order Statistics, Journal of Nonparametric Statistics, 26, 415–432.

See Also

distfree.est, npregtol.int

Examples

## 90%/95% 2-sided nonparametric tolerance intervals for a
## sample of size 200.

set.seed(100)
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x <- rlogis(200, 5, 1)
out <- nptol.int(x = x, alpha = 0.10, P = 0.95, side = 1,

method = "WILKS", upper = NULL, lower = NULL)
out

plottol(out, x, plot.type = "both", side = "two", x.lab = "X")

paretotol.int Pareto (or Power Distribution) Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for data distributed according to either a Pareto
distribution or a power distribution (i.e., the inverse Pareto distribution).

Usage

paretotol.int(x, alpha = 0.05, P = 0.99, side = 1,
method = c("GPU", "DUN"), power.dist = FALSE)

Arguments

x A vector of data which is distributed according to either a Pareto distribution or
a power distribution.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

method The method for how the upper tolerance bound is approximated when trans-
forming to utilize the relationship with the 2-parameter exponential distribution.
"GPU" is the Guenther-Patil-Upppuluri method. "DUN" is the Dunsmore method,
which was empirically shown to be an improvement for samples greater than or
equal to 8. More information on these methods can be found in the "References".

power.dist If TRUE, then the data is considered to be from a power distribution, in which
case the output gives tolerance intervals for the power distribution. The default
is FALSE.

Details

Recall that if the random variable X is distributed according to a Pareto distribution, then the ran-
dom variable Y = ln(X) is distributed according to a 2-parameter exponential distribution. More-
over, if the random variable W is distributed according to a power distribution, then the random
variable X = 1/W is distributed according to a Pareto distribution, which in turn means that the
random variable Y = ln(1/W ) is distributed according to a 2-parameter exponential distribution.
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Value

paretotol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

References

Dunsmore, I. R. (1978), Some Approximations for Tolerance Factors for the Two Parameter Expo-
nential Distribution, Technometrics, 20, 317–318.

Engelhardt, M. and Bain, L. J. (1978), Tolerance Limits and Confidence Limits on Reliability for
the Two-Parameter Exponential Distribution, Technometrics, 20, 37–39.

Guenther, W. C., Patil, S. A., and Uppuluri, V. R. R. (1976), One-Sided β-Content Tolerance Factors
for the Two Parameter Exponential Distribution, Technometrics, 18, 333–340.

Krishnamoorthy, K., Mathew, T., and Mukherjee, S. (2008), Normal-Based Methods for a Gamma
Distribution: Prediction and Tolerance Intervals and Stress-Strength Reliability, Technometrics, 50,
69–78.

See Also

TwoParExponential, exp2tol.int

Examples

## 95%/99% 2-sided Pareto tolerance intervals
## for a sample of size 500.

set.seed(100)
x <- exp(r2exp(500, rate = 0.15, shift = 2))
out <- paretotol.int(x = x, alpha = 0.05, P = 0.99, side = 2,

method = "DUN", power.dist = FALSE)
out

plottol(out, x, plot.type = "both", side = "two",
x.lab = "Pareto Data")
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plotly_anovatol Plotting Tolerance Intervals for ANOVA

Description

Plot tolerance intervals for each factor level in a balanced (or nearly-balanced) ANOVA

Usage

plotly_anovatol(tol.out,
x,
factors = NULL,
side = c("two","upper", "lower"),
range.min = NULL,
range.max = NULL,
x.lab = NULL,
x.lab.size = NULL,
y.lab = NULL,
y.lab.size = NULL,
x.tick.size = NULL,
y.tick.size = NULL,
x.col = NULL,
x.cex = NULL,
tol.col = NULL,
tol.lwd = NULL,
tol.line.type = c("dash","dot","dashdot","solid"),
tol.lower.col = NULL,
tol.lower.lwd = NULL,
tol.lower.line.type = c("dash","dot","dashdot","solid"),
tol.upper.col = NULL,
tol.upper.lwd = NULL,
tol.upper.line.type = c("dash","dot","dashdot","solid"),
title = NULL,
title.position.x = NULL,
title.position.y = NULL,
title.size = NULL)

Arguments

tol.out Output from any ANOVA tolerance interval procedure.

x A data frame consisting of the data fitted in lm.out. Note that data must have
one column for each main effect (i.e., factor) that is analyzed in lm.out and that
these columns must be of class factor.

factors Specify certain factor(s) to present. The name(s) of the factor(s) needs to be
consistent with the name(s) in the original dataset.
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side side = "two" produces plots for either the two-sided tolerance intervals or both
one-sided tolerance intervals. This will be determined by the output in tol.out.
side = "upper" produces plots showing the upper tolerance bounds. side =
"lower" produces plots showing the lower tolerance bounds. Note that if the
output of in tol.out shows 2-sided tolerance intervals, side = "upper" and
side = "lower" still shows both upper AND lower tolerance intervals.

range.min Minimum value on the y-axis. If actual lower limit is greater than range.min,
then the lower limit will be presented.

range.max Maximum value on the y-axis. If actual upper limit is smaller than range.max,
then the upper limit will be presented.

x.lab Label of the x-axis.

x.lab.size Size of label of the x-axis.

y.lab Label of the y-axis.

y.lab.size Size of label of the y-axis.

x.tick.size Size of tick marks on the x-axis.

y.tick.size Size of tick marks on the y-axis.

x.col Color of original data points.

x.cex Size of original data points.

tol.col Color of the tolerance intervals when tol.out shows 2-sided tolerance intervals.

tol.lwd Width of the tolerance intervals when tol.out shows 2-sided tolerance inter-
vals.

tol.line.type Line type of the tolerance intervals when tol.out shows 2-sided tolerance in-
tervals.

tol.lower.col Color of the lower tolerance interval when tol.out shows 1-sided tolerance
intervals. When side = "two", users still have options to choose different colors
for upper and lower tolerance intervals.

tol.lower.lwd Width of the lower tolerance interval when tol.out shows 1-sided tolerance in-
tervals. When side = "two", users still have options to choose different widths
for upper and lower tolerance intervals.

tol.lower.line.type

Line type of lower tolerance interval when tol.out shows 1-sided tolerance in-
tervals. When side = "two", users still have options to choose different widths
for upper and lower tolerance intervals.

tol.upper.col Color of the upper tolerance interval when tol.out shows 1-sided tolerance
intervals. When side = "two", users still have options to choose different colors
for upper and lower tolerance intervals.

tol.upper.lwd Width of the upper tolerance interval when tol.out shows 1-sided tolerance in-
tervals. When side = "two", users still have options to choose different widths
for upper and lower tolerance intervals.

tol.upper.line.type

Line type of upper tolerance interval when tol.out shows 1-sided tolerance in-
tervals. When side = "two", users still have options to choose different widths
for upper and lower tolerance intervals.



plotly_controltol 75

title The main title on top of the plot
title.position.x

Horizontal position of the title.
title.position.y

Vertical position of the title.

title.size Size of the title.

Value

plotly_anovatol returns box plots as well as corresponding tolerance intervals for each main
effect of an ANOVA.

References

Howe, W. G. (1969), Two-Sided Tolerance Limits for Normal Populations - Some Improvements,
Journal of the American Statistical Association, 64, 610–620.

Weissberg, A. and Beatty, G. (1969), Tables of Tolerance Limit Factors for Normal Distributions,
Technometrics, 2, 483–500.

See Also

anovatol.int, plottol, K.factor, normtol.int, lm, anova

Examples

## 90%/95% 1-sided tolerance intervals for a 2-way ANOVA
## using the "warpbreaks" data.
attach(warpbreaks)
lm.out <- lm(breaks ~ wool + tension)
out.1 <- anovatol.int(lm.out, data = warpbreaks, alpha = 0.10,

P = 0.95, side = 1, method = "HE")
out.1
plotly_anovatol(out.1, x = warpbreaks , factors = 'wool' , x.lab = "Wool" , side="two")

## 90%/95% 2-sided tolerance intervals for a 2-way ANOVA
## using the "warpbreaks" data.
out.2 <- anovatol.int(lm.out, data = warpbreaks, alpha = 0.10,

P = 0.95, side = 2, method = "HE")
out.2
plotly_anovatol(out.2, x = warpbreaks , range.min = 20 , range.max = 60)

plotly_controltol Plotting Tolerance Intervals for Control Charts

Description

Provides interactive control charts for tolerance bounds on continuous data.
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Usage

plotly_controltol(tol.out ,
x ,
side = c("two","upper", "lower"),
x.lab = NULL,
x.lab.size = NULL,
y.lab = NULL,
y.lab.size = NULL,
x.tick.size = NULL,
y.tick.size = NULL,
x.col = NULL,
x.cex = NULL,
fit.col = NULL,
fit.lwd = NULL,
fit.line.type = c("solid","dash","dot","dashdot"),
tol.col = NULL,
tol.lwd = NULL,
tol.line.type = c("dash","dot","dashdot","solid"),
title.position.x = NULL,
title.position.y = NULL,
title.size = NULL,
title = NULL)

Arguments

tol.out Output from any continuous tolerance interval procedure.

x Data from a continuous distribution.

side side = "two" produces plots for either the two-sided tolerance intervals or both
one-sided tolerance intervals. This will be determined by the output in tol.out.
side = "upper" produces plots showing the upper tolerance bounds. side =
"lower" produces plots showing the lower tolerance bounds. Note that if the
output of in tol.out shows 2-sided tolerance intervals, side = "upper" and
side = "lower" still shows both upper AND lower tolerance intervals.

x.lab Label of the x-axis.

x.lab.size Size of label of the x-axis.

y.lab Label of the y-axis.

y.lab.size Size of label of the y-axis.

x.tick.size Size of tick marks on the x-axis.

y.tick.size Size of tick marks on the y-axis.

x.col Color of original data points.

x.cex Size of original data points.

fit.col Color of fitted line.

fit.lwd Width of fitted line.

fit.line.type Type of the fitted line.
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tol.col Color of the tolerance intervals when tol.out shows 2-sided tolerance intervals.

tol.lwd Width of the tolerance intervals when tol.out shows 2-sided tolerance inter-
vals.

tol.line.type Line type of tolerance intervals.

title The main title on top of the plot.

title.size Size of the title.
title.position.x

Horizontal position of the title.
title.position.y

Vertical position of the title.

Value

plotly_controltol can return boxplots as well as corresponding tolerance intervals for any con-
tinuous data.

References

Montgomery, D. C. (2005), Introduction to Statistical Quality Control, Fifth Edition, John Wiley &
Sons, Inc.

See Also

plottol

Examples

## 95%/85% 2-sided Bayesian normal tolerance limits for
## a sample of size 100.
set.seed(100)
x <- rnorm(100)
out <- bayesnormtol.int(x = x, alpha = 0.05, P = 0.85,

side = 2, method = "EXACT",
hyper.par = list(mu.0 = 0,

sig2.0 = 1, n.0 = 10, m.0 = 10))
out
plotly_controltol(out, x, x.lab = "Normal Data")

plotly_histtol Plotting Histograms and Corresponding Tolerance Intervals for Con-
tinuous Data

Description

Provides interactive tolerance intervals for continous data based on its histogram.
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Usage

plotly_histtol(tol.out,
x,
side = c("two","upper", "lower"),
x.lab = NULL,
x.lab.size = NULL,
x.tick.size = NULL,
y.lab.size = NULL,
y.tick.size = NULL,
title = NULL,
title.size = NULL,
title.position.x = NULL,
title.position.y = NULL,
bin.col = NULL,
tol.col = NULL,
tol.lwd = NULL,
tol.line.type = c("dash","dot","dashdot","solid"))

Arguments

tol.out Output from any continuous tolerance interval procedure.

x Data from a continuous distribution.

side side = "two" produces plots for either the two-sided tolerance intervals or both
one-sided tolerance intervals. This will be determined by the output in tol.out.
side = "upper" produces plots showing the upper tolerance bounds. side =
"lower" produces plots showing the lower tolerance bounds. Note that if the
output of in tol.out shows 2-sided tolerance intervals, side = "upper" and
side = "lower" still shows both upper AND lower tolerance intervals.

x.lab Label of the x-axis.

x.lab.size Size of label of the x-axis.

x.tick.size Size of tick marks on the x-axis.

y.lab.size Size of label of the y-axis.

y.tick.size Size of tick marks on the y-axis.

title The main title on top of the histogram.

title.size Size of the title.
title.position.x

Horizontal position of the title.
title.position.y

Vertical position of the title.

bin.col Color of the bins.

tol.col Color of the tolerance interval(s).

tol.lwd Width of the tolerance interval(s).

tol.line.type Line type of the tolerance interval(s).
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Value

plotly_histtol can return histograms as well as corresponding tolerance intervals for any contin-
uous data.

References

Montgomery, D. C. (2005), Introduction to Statistical Quality Control, Fifth Edition, John Wiley &
Sons, Inc.

See Also

plottol

Examples

## 90%/90% 1-sided Weibull tolerance intervals for a sample
## of size 150.
set.seed(100)
x <- rweibull(150, 3, 75)
out <- exttol.int(x = x, alpha = 0.15, P = 0.90, dist = "Weibull" , side = 1)
out
plotly_histtol(out, x, side = "lower", x.lab = "Weibull Data" , tol.lwd = 3)

plotly_multitol Plotting Tolerance Region for Multivariate Distributions

Description

Provides interactive tolerance region on multivariate continuous data.

Usage

plotly_multitol(tol.out,
x,
x.lab = NULL,
x.lab.size = NULL,
y.lab = NULL,
y.lab.size = NULL,
z.lab = NULL,
z.lab.size = NULL,
x.tick.size = NULL,
y.tick.size = NULL,
z.tick.size = NULL,
x.col = NULL,
x.cex = NULL,
tol.col = NULL,
tol.lwd = NULL,
tol.line.type = c("dash","dot","dashdot","solid"),
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title = NULL,
title.position.x = NULL,
title.position.y = NULL,
title.size = NULL)

Arguments

tol.out Output from mvtol.region for multivariate data.

x Multivariate data from continuous distributions.

x.lab Label of the x-axis.

x.lab.size Size of label of the x-axis.

y.lab Label of the y-axis.

y.lab.size Size of label of the y-axis.

z.lab Label of the z-axis.

z.lab.size Size of label of the z-axis.

x.tick.size Size of tick marks on the x-axis.

y.tick.size Size of tick marks on the y-axis.

z.tick.size Size of tick marks on the z-axis.

x.col Color of original data points.

x.cex Size of original data points.

tol.col Color of the tolerance region.

tol.lwd Width of boundary of the tolerance region when data is bivariate.

tol.line.type Line type of the tolerance region for bivariate data.

title The main title on top of the plot.

title.size Size of the title.
title.position.x

Horizontal position of the title.
title.position.y

Vertical position of the title.

Value

plotly_multitol returns tolerance regions for both bivariate and trivariate continuous data.

References

Krishnamoorthy, K. and Mathew, T. (1999), Comparison of Approximation Methods for Computing
Tolerance Factors for a Multivariate Normal Population, Technometrics, 41, 234–249.

Krishnamoorthy, K. and Mondal, S. (2006), Improved Tolerance Factors for Multivariate Normal
Distributions, Communications in Statistics - Simulation and Computation, 35, 461–478.

See Also

plottol, mvtol.region
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Examples

## 90%/90% bivariate normal tolerance region.
set.seed(100)
x1 <- rnorm(100, 0, 0.2)
x2 <- rnorm(100, 0, 0.5)
x <- cbind(x1, x2)
out1 <- mvtol.region(x = x, alpha = 0.10, P = 0.90, B = 1000,

method = "KM")
out1
plotly_multitol(out1, x , x.lab = "X1" , y.lab = "X2")

## 90%/90% trivariate normal tolerance region.
set.seed(100)
x1 <- rnorm(100, 0, 0.2)
x2 <- rnorm(100, 0, 0.5)
x3 <- rnorm(100, 5, 1)
x <- cbind(x1, x2, x3)
mvtol.region(x = x, alpha = c(0.10, 0.05, 0.01),

P = c(0.90, 0.95, 0.99), B = 1000, method = "KM")
out2 <- mvtol.region(x = x, alpha = 0.10, P = 0.90, B = 1000,

method = "KM")
out2
plotly_multitol(out2, x , x.lab = "X1" , y.lab = "X2" , z.lab = "X3",

title.position.x = 0.57)

plotly_normOC Operating Characteristic (OC) Curves for K-Factors for Tolerance In-
tervals Based on Normality (a plotly version of norm.OC)

Description

plotly_normOC is an updated function rooted in norm.OC.

Usage

plotly_normOC(k = NULL,
alpha = NULL,
P = NULL,
n,
side = 1,
method = c("HE", "HE2", "WBE", "ELL", "KM", "EXACT", "OCT"),
m = 50,
range.min = NULL,
range.max = NULL,
x.lab.size = NULL,
y.lab.size = NULL,
x.tick.size = NULL,
y.tick.size = NULL,
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title = NULL,
title.size = NULL,
title.position.x = NULL,
title.position.y = NULL,
legend.size = NULL,
x.cex = NULL,
line.width = NULL,
line.type = c("solid","dash","dot","dashdot"))

Arguments

k If wanting OC curves where the confidence level or content level is on the y-
axis, then a single positive value of k must be specified. This would be the target
k-factor for the desired tolerance interval. If k = NULL, then OC curves will be
constructed where the k-factor value is found for given levels of alpha, P, and
n.

alpha The set of levels chosen such that 1-alpha are confidence levels. If wanting OC
curves where the content level is being calculated, then each curve will corre-
spond to a level in the set of alpha. If a set of P values is specified, then OC
curves will be constructed where the k-factor is found and each curve will cor-
respond to each combination of alpha and P. If alpha = NULL, then OC curves
will be constructed to find the confidence level for given levels of k, P, and n.

P The set of content levels to be considered. If wanting OC curves where the
confidence level is being calculated, then each curve will correspond to a level
in the set of P. If a set of alpha values is specified, then OC curves will be
constructed where the k-factor is found and each curve will correspond to each
combination of alpha and P. If P = NULL, then OC curves will be constructed to
find the content level for given levels of k, alpha, and n.

n A sequence of sample sizes to consider. This must be a vector of at least length
2 since all OC curves are constructed as functions of n.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

method The method for calculating the k-factors. The k-factor for the 1-sided toler-
ance intervals is performed exactly and thus is the same for the chosen method.
"HE" is the Howe method and is often viewed as being extremely accurate, even
for small sample sizes. "HE2" is a second method due to Howe, which per-
forms similarly to the Weissberg-Beatty method, but is computationally sim-
pler. "WBE" is the Weissberg-Beatty method (also called the Wald-Wolfowitz
method), which performs similarly to the first Howe method for larger sample
sizes. "ELL" is the Ellison correction to the Weissberg-Beatty method when f is
appreciably larger than n^2. A warning message is displayed if f is not larger
than n^2. "KM" is the Krishnamoorthy-Mathew approximation to the exact solu-
tion, which works well for larger sample sizes. "EXACT" computes the k-factor
exactly by finding the integral solution to the problem via the integrate func-
tion. Note the computation time of this method is largely determined by m.
"OCT" is the Owen approach to compute the k-factor when controlling the tails
so that there is not more than (1-P)/2 of the data in each tail of the distribution.
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m The maximum number of subintervals to be used in the integrate function,
which is used for the underlying exact method for calculating the normal toler-
ance intervals.

range.min The minimum value of the y-axis.

range.max The maximum value of the y-axis.

x.lab.size Size of label of the x-axis.

y.lab.size Size of label of the y-axis.

x.tick.size Size of tick marks on the x-axis.

y.tick.size Sze of tick marks on the y-axis.

title The main title on top of the plot.

title.size Size of the title.
title.position.x

Horizontal position of the title.
title.position.y

Vertical position of the title.

legend.size Size of the legend.

x.cex Size of data points.

line.width Width of lines connecting data points.

line.type The type of lines connection data points.

Value

norm.OC returns a figure with the OC curves constructed using the specifications in the arguments.

References

Young, D. S. (2016), Normal Tolerance Interval Procedures in the tolerance Package, The R Journal,
8, 200–212.

See Also

K.factor, normtol.int, norm.OC

Examples

## The three types of OC-curves that can be constructed
## with the ggnorm.OC function.

plotly_normOC(k = 4, alpha = NULL, P = c(0.90, 0.95, 0.99),
n = 10:20, side = 1)

plotly_normOC(k = 4, alpha = c(0.01, 0.05, 0.10), P = NULL,
n = 10:20, side = 1)

plotly_normOC(k = NULL, P = c(0.90, 0.95, 0.99),
alpha=c(0.01,0.05,0.10), n = 10:20, side = 1)
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plotly_npmvtol plotting Nonparametric Multivaraite Hyperrectangular Tolerance Re-
gion

Description

plotly_npmvtol is plotting function for nonparametric multivaraite hyperrectangular tolerance re-
gion. The function takes the outcome of npmvtol.region as an input and provides visualzation for
hypperrectangular tolerance regions between two variables.

Usage

plotly_npmvtol(tol.out,
x,
var.names = NULL,
title = NULL,
x.col = "#4298B5",
x.cex = 6,
x.shape = "dot",
outlier.col = "#A6192E",
outlier.cex = 8,
outlier.shape = "triangle-up",
tol.col = "#D1DDE6",
tol.opacity = 0.4,
x.lab.size = 12,
x.tick.size = 12,
y.lab.size = 12,
y.tick.size = 12,
title.position.x = 0.5,
title.position.y = 0.98,
title.size = 12,
show.bound = TRUE,
bound.type = c("dash", "dot", "solid", "longdash",

"dashdot", "longdashdot"),
bound.col = "#000000",
bound.lwd = 1
)

Arguments

tol.out Output from npmvtol.region for multivariate data.

x Data frame for different variables. Columns of x represent for different vari-
ables.

var.names Labels of variable names. The dimension of var.names needs to be consistent
with column dimension of x.
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title The main title on top of the plot. The length of title can be either 1 or multi-
ple. If only 1 title is specified, all plots share the same title. If multiple titles are
specified, number of titles needs to be consistent with the number of combina-
tions of variables. For example, if the data has 4 variables, either 1 or 6 (choose
2 out of 4) titles need to be specified.

x.col Color of original data points, excluding outliers.

x.cex Size of original data points, excluding outliers.

x.shape Shape of original data points, excluding outliers.

outlier.col Color of outliers.

outlier.cex Size of outliers.

outlier.shape Shape of outliers.

tol.col Color of tolerance region.

tol.opacity Opacity of tolerance region.

x.lab.size Size of label of the x-axis.

x.tick.size Size of tick marks on the x-axis.

y.lab.size Size of label of the y-axis.

y.tick.size Size of tick marks on the y-axis.
title.position.x

Horizontal position of the title.
title.position.y

Vertical position of the title.

title.size Size of the title.

show.bound Logical indicating to show rectanglular boundaries. Default is TRUE.

bound.type Line type of the rectangle boundaries.

bound.col Color of the rectangle boundaries.

bound.lwd Width of the rectangle boundaries.

Value

plotly_npmvtol returns figures of hypperectangular tolerance regions between two random vari-
able generated by npmvtol.region.

References

Young, D. S., & Mathew, T. (2020), Nonparametric Hyperrectangular Tolerance and Prediction
Regions for Setting Multivariate Reference Regions in Laboratory Medicine. Statistical Methods in
Medical Research, 29, 3569–3585.

See Also

npmvtol.region
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Examples

library(plotly)

mdepth <- function(pts, x){
mahalanobis(pts, center = rep(0, 3),

cov = diag(1, 3))
}

set.seed(100)
x <- cbind(X1=rnorm(300), X2=rnorm(300), X3=rnorm(300))
out <-npmvtol.region(x = x, alpha = 0.10, P = 0.90, depth.fn = mdepth,

type = "semispace", semi.order = list(lower = 2,
center = 3, upper = 1))

gg.out <- plotly_npmvtol(tol.out = out , x = x)

plotly_regtol Plotting Tolerance Intervals for Regressions

Description

Provides interactive tolerance intervals for regression data. More specifically, plotly_regtol
presents tolerance bounds for linear regression, nonlinear regression, and nonparametric regres-
sion models. In addtion, this updated function is capable of showing tolerance plane for trivariate
regression models.

Usage

plotly_regtol(tol.out,
x,
new.x = NULL,
y,
side = c("two","upper", "lower"),
rect = FALSE,
smooth = 4,
x.lab = NULL,
x.lab.size = NULL,
y.lab = NULL,
y.lab.size = NULL,
z.lab = NULL,
z.lab.size = NULL,
x.tick.size = NULL,
y.tick.size = NULL,
z.tick.size = NULL,
x.col = NULL,
x.cex = NULL,
fit.col = NULL,
fit.lwd = NULL,
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fit.line.type = c("dash","dot","dashdot","solid"),
fit.opacity = NULL,
tol.col = NULL,
tol.lwd = NULL,
tol.line.type = c("dash","dot","dashdot","solid"),
tol.opacity = NULL,
title.position.x = NULL,
title.position.y = NULL,
title = NULL,
title.size = NULL)

Arguments

tol.out Output from regtol.int, nlregtol.int, npregtol.int or mvregtol.region
for regressional data.

x Data frame for explanatory variables. If there are more than one explanatory
variables, columns of x represents regressors.

new.x An optional data frame in which to look for variables with which to predict.
new.x can be used to plot linear regression, nonlinear regression, and multi-
variate linear regression. new.x has to be a subset of new data in the original
output.

y Data frame for response variable. y is in the formate of a vector.

side side = "two" produces plots for either the two-sided tolerance intervals or both
one-sided tolerance intervals. This will be determined by the output in tol.out.
side = "upper" produces plots showing the upper tolerance bounds. side =
"lower" produces plots showing the lower tolerance bounds. Note that if the
output of in tol.out shows 2-sided tolerance intervals, side = "upper" and
side = "lower" still shows both upper AND lower tolerance intervals.

rect This argument is used for plotting tolerance plane(s) of multivariate regression
region. When rect=TRUE the x1-x2 plane is a rectangle.

smooth The smooth parameter for the x1-x2 plane when rect=TRUE.

x.lab Label of the x-axis.

x.lab.size Size of label of the x-axis.

y.lab Label of the y-axis.

y.lab.size Size of label of the y-axis.

z.lab Label of the z-axis.

z.lab.size Size of label of the z-axis.

x.tick.size Size of tick marks on the x-axis.

y.tick.size Size of tick marks on the y-axis.

z.tick.size Size of tick marks on the z-axis.

x.col Color of original data points.

x.cex Size of original data points.

fit.col Color of fitted line or fitted plane.
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fit.lwd Width of fitted line or fitted plane.

fit.line.type Type of fitted line or fitted plane.

fit.opacity Opacity of fitted line or fitted plane.

tol.col Color of tolerance intervals or tolerance plane.

tol.lwd Width of tolerance intervals.

tol.line.type Line type of tolerance intervals

tol.opacity Opacity of tolerance region.
title.position.x

Horizontal position of the title.
title.position.y

Vertical position of the title.

title The main title on top of the plot.

title.size Size of the title.

Value

plotly_regtol returns tolerance intervals for linear regression, nonlinear regression, nonparamet-
ric regression, as well as tolerance planes for multivariate (multiple) linear regression models.

References

Montgomery, D. C. (2005), Introduction to Statistical Quality Control, Fifth Edition, John Wiley &
Sons, Inc.

See Also

plottol, regtol.int, regtol.int, nlregtol.int, npregtol.int, npregtol.int,mvregtol.region

Examples

## 95%/95% 1-sided linear regression tolerance bounds
## for a sample of size 100.

library(plotly)

set.seed(100)
x <- runif(100, 0, 10)
y <- 20 + 5*x + rnorm(100, 0, 3)
out1 <- regtol.int(reg = lm(y ~ x), new.x = c(3,6,20), new=TRUE ,

side = 1, alpha = 0.05, P = 0.95)
plotly_regtol(tol.out = out1 , x=x , y=y , new.x = c(6,20), side = "two" ,

fit.line.type = "dash" , tol.line.type = "solid")
########################
set.seed(100)
x1 <- runif(100, 0, 10)
x2 <- rpois(100 , 5)
y <- 20 + 5*x1 + 3*x2 + rnorm(100, 0, 3)
x1.new <- runif(10 , 0 , 10)
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x2.new <- rpois(10 , 5)
out2 <- regtol.int(reg = lm(y ~ x1 + x2), new.x = cbind(x1.new , x2.new), new=TRUE,

side = 1, alpha = 0.05, P = 0.95)
plotly_regtol(tol.out = out2 , y=y , x=cbind(x1,x2) , new.x = cbind(x1.new , x2.new) ,

rect = TRUE , side = "two")
###########################
## 95%/95% 2-sided nonlinear regression tolerance bounds
## for a sample of size 50.
set.seed(100)
x <- runif(50, 5, 45)
f1 <- function(x, b1, b2) b1 + (0.49 - b1)*exp(-b2*(x - 8)) +

rnorm(50, sd = 0.01)
y <- f1(x, 0.39, 0.11)
formula <- as.formula(y ~ b1 + (0.49 - b1)*exp(-b2*(x - 8)))
out1 <- nlregtol.int(formula = formula,

xy.data = data.frame(cbind(y, x)),
x.new=c(10,20,50), side = 2,
alpha = 0.05, P = 0.95 , new = TRUE)

plotly_regtol(tol.out = out1 , x=x , y=y , new.x = c(20,50) , side = "two",
fit.line.type = "dot")

###############

## 95%/95% 1-sided nonparametric regression tolerance bounds
## for a sample of size 50.
set.seed(100)
x <- runif(50, 5, 45)
f1 <- function(x, b1, b2) b1 + (0.49 - b1)*exp(-b2*(x - 8)) + rnorm(50, sd = 0.01)
y <- f1(x, 0.39, 0.11)
y.hat <- loess(y~x)$fit
out1 <- npregtol.int(x = x, y = y, y.hat = y.hat, side = 1,

alpha = 0.05, P = 0.95, method = "WILKS" , new = TRUE)
plotly_regtol(tol.out = out1 , x=x , y=y , side = "two" , fit.line.type = "dash")
############
set.seed(100)
x1 <- runif(50, 5, 45)
x2 <- rnorm(50 , 0 , 1)
f1 <- function(x1 , x2 , b1, b2) {b1 + (0.49 - b1)*exp(-b2*(x1 + x2 - 8)) + rnorm(50, sd = 0.01)}
y <- f1(x1 , x2 , 0.39, 0.11)
y.hat <- loess(y~ x1 + x2)$fit
out2 <- npregtol.int(x = cbind(x1 , x2), y = y, y.hat = y.hat, side = 1,

alpha = 0.05, P = 0.95, method = "WILKS" , new = TRUE)
plotly_regtol(tol.out = out2 , y=y , x=cbind(x1,x2) ,

rect = TRUE , smooth = 100 , side = "two")

plottol Plotting Capabilities for Tolerance Intervals

Description

Provides control charts and/or histograms for tolerance bounds on continuous data as well as toler-
ance ellipses for data distributed according to bivariate and trivariate normal distributions. Scatter-
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plots with regression tolerance bounds and interval plots for ANOVA tolerance intervals may also
be produced.

Usage

plottol(tol.out, x, y = NULL, y.hat = NULL,
side = c("two", "upper", "lower"),
plot.type = c("control", "hist", "both"),
x.lab = NULL, y.lab = NULL, z.lab = NULL, ...)

Arguments

tol.out Output from any continuous (including ANOVA) tolerance interval procedure
or from a regression tolerance bound procedure.

x Either data from a continuous distribution or the predictors for a regression
model. If this is a design matrix for a linear regression model, then it must be
in matrix form AND include a column of 1’s if there is to be an intercept. Note
that multiple predictors are only allowed if considering polynomial regression.
If the output for tol.out concerns ANOVA tolerance intervals, then x must be
a data frame.

y The response vector for a regression setting. Leave as NULL if not doing regres-
sion tolerance bounds.

y.hat The fitted values from a nonparametric smoothing routine if plotting nonpara-
metric regression tolerance bounds. Otherwise, leave as NULL.

side side = "two" produces plots for either the two-sided tolerance intervals or both
one-sided tolerance intervals. This will be determined by the output in tol.out.
side = "upper" produces plots showing the upper tolerance bounds. side =
"lower" produces plots showing the lower tolerance bounds.

plot.type plot.type = "control" produces a control chart of the data along with the
tolerance bounds specified by side. plot.type = "hist" produces a histogram
of the data along with the tolerance bounds specified by side. plot.type =
"both" produces both the control chart and histogram. This argument is ignored
when plotting regression data.

x.lab Specify the label for the x-axis.

y.lab Specify the label for the y-axis.

z.lab Specify the label for the z-axis.

... Additional arguments passed to the plotting function used for the control charts
or regression scatterplots.

Value

plottol can return a control chart, histogram, or both for continuous data along with the calculated
tolerance intervals. For regression data, plottol returns a scatterplot along with the regression
tolerance bounds. For ANOVA output, plottol returns an interval plot for each factor.
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References

Montgomery, D. C. (2005), Introduction to Statistical Quality Control, Fifth Edition, John Wiley &
Sons, Inc.

Examples

## 90%/90% 1-sided Weibull tolerance intervals for a sample
## of size 150.

set.seed(100)
x <- rweibull(150, 3, 75)
out <- exttol.int(x = x, alpha = 0.15, P = 0.90,

dist = "Weibull")
out

plottol(out, x, plot.type = "both", side = "lower",
x.lab = "Weibull Data")

## 90%/90% trivariate normal tolerance region.

set.seed(100)
x1 <- rnorm(100, 0, 0.2)
x2 <- rnorm(100, 0, 0.5)
x3 <- rnorm(100, 5, 1)
x <- cbind(x1, x2, x3)
mvtol.region(x = x, alpha = c(0.10, 0.05, 0.01),

P = c(0.90, 0.95, 0.99), B = 1000)

out2 <- mvtol.region(x = x, alpha = 0.10, P = 0.90, B = 1000)
out2
plottol(out2, x)

## 95%/95% 2-sided linear regression tolerance bounds
## for a sample of size 100.

set.seed(100)
x <- runif(100, 0, 10)
y <- 20 + 5*x + rnorm(100, 0, 3)
out3 <- regtol.int(reg = lm(y ~ x), new.x = data.frame(x = c(3, 6, 9)),

side = 2, alpha = 0.05, P = 0.95)
plottol(out3, x = cbind(1, x), y = y, side = "two", x.lab = "X",

y.lab = "Y")

poislind.ll Maximum Likelihood Estimation for the Discrete Poisson-Lindley Dis-
tribution

Description

Performs maximum likelihood estimation for the parameter of the Poisson-Lindley distribution.
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Usage

poislind.ll(x, theta = NULL, ...)

Arguments

x A vector of raw data which is distributed according to a Poisson-Lindley distri-
bution.

theta Optional starting value for the parameter. If NULL, then the method of moments
estimator is used.

... Additional arguments passed to the mle function.

Details

The discrete Poisson-Lindley distribution is a compound distribution that, potentially, provides a
better fit for count data relative to the traditional Poisson and negative binomial distributions.

Value

See the help file for mle to see how the output is structured.

References

Ghitany, M. E. and Al-Mutairi, D. K. (2009), Estimation Methods for the Discrete Poisson-Lindley
Distribution, Journal of Statistical Computation and Simulation, 79, 1–9.

Sankaran, M. (1970), The Discrete Poisson-Lindley Distribution, Biometrics, 26, 145–149.

See Also

mle, PoissonLindley

Examples

## Maximum likelihood estimation for randomly generated data
## from the Poisson-Lindley distribution.

set.seed(100)

pl.data <- rpoislind(n = 500, theta = 0.5)
out.pl <- poislind.ll(pl.data)
stats4::coef(out.pl)
stats4::vcov(out.pl)
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poislindtol.int Poisson-Lindley Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for data distributed according to the Poisson-Lindley
distribution.

Usage

poislindtol.int(x, m = NULL, alpha = 0.05, P = 0.99, side = 1,
...)

Arguments

x A vector of raw data which is distributed according to a Poisson-Lindley distri-
bution.

m The number of observations in a future sample for which the tolerance limits
will be calculated. By default, m = NULL and, thus, m will be set equal to the
original sample size.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

... Additional arguments passed to the poislind.ll function, which is used for
maximum likelihood estimation.

Details

The discrete Poisson-Lindley distribution is a compound distribution that, potentially, provides
a better fit for count data relative to the traditional Poisson and negative binomial distributions.
Poisson-Lindley distributions are heavily right-skewed distributions. For most practical applica-
tions, one will typically be interested in 1-sided upper bounds.

Value

poislindtol.int returns a data frame with the following items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

theta MLE for the shape parameter theta.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.
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References

Naghizadeh Qomi, M., Kiapour, A., and Young, D. S. (2015), Approximate Tolerance Intervals for
the Discrete Poisson-Lindley Distribution, Journal of Statistical Computation and Simulation, 86,
841–854.

See Also

PoissonLindley, poislind.ll

Examples

## 90%/90% 1-sided tolerance intervals for data assuming
## the Poisson-Lindley distribution.

x <- c(rep(0, 447), rep(1, 132), rep(2, 42), rep(3, 21),
rep(4, 3), rep(5, 2))

out <- poislindtol.int(x, alpha = 0.10, P = 0.90, side = 1)
out

PoissonLindley Discrete Poisson-Lindley Distribution

Description

Density (mass), distribution function, quantile function, and random generation for the Poisson-
Lindley distribution.

Usage

dpoislind(x, theta, log = FALSE)
ppoislind(q, theta, lower.tail = TRUE, log.p = FALSE)
qpoislind(p, theta, lower.tail = TRUE, log.p = FALSE)
rpoislind(n, theta)

Arguments

x, q Vector of quantiles.

p Vector of probabilities.

n The number of observations. If length>1, then the length is taken to be the
number required.

theta The shape parameter, which must be greater than 0.

log, log.p Logical vectors. If TRUE, then the probabilities are given as log(p).

lower.tail Logical vector. If TRUE, then probabilities are P [X ≤ x], else P [X > x].
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Details

The Poisson-Lindley distribution has mass

p(x) =
θ2(x+ θ + 2)

(θ + 1)x+3
,

where x = 0, 1, . . . and θ > 0 is the shape parameter.

Value

dpoislind gives the density (mass), ppoislind gives the distribution function, qpoislind gives
the quantile function, and rpoislind generates random deviates for the specified distribution.

References

Ghitany, M. E. and Al-Mutairi, D. K. (2009), Estimation Methods for the Discrete Poisson-Lindley
Distribution, Journal of Statistical Computation and Simulation, 79, 1–9.

Sankaran, M. (1970), The Discrete Poisson-Lindley Distribution, Biometrics, 26, 145–149.

See Also

runif and .Random.seed about random number generation.

Examples

## Randomly generated data from the Poisson-Lindley
## distribution.

set.seed(100)
x <- rpoislind(n = 150, theta = 0.5)
hist(x, main = "Randomly Generated Data", prob = TRUE)

x.1 <- sort(x)
y <- dpoislind(x = x.1, theta = 0.5)
lines(x.1, y, col = 2, lwd = 2)

plot(x.1, ppoislind(q = x.1, theta = 0.5), type = "l",
xlab = "x", ylab = "Cumulative Probabilities")

qpoislind(p = 0.20, theta = 0.5, lower.tail = FALSE)
qpoislind(p = 0.80, theta = 0.5)

poistol.int Poisson Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for Poisson random variables. From a statistical
quality control perspective, these limits bound the number of occurrences (which follow a Poisson
distribution) in a specified future time period.
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Usage

poistol.int(x, n, m = NULL, alpha = 0.05, P = 0.99, side = 1,
method = c("TAB", "LS", "SC", "CC", "VS", "RVS",
"FT", "CSC"))

Arguments

x The number of occurrences of the event in time period n. Can be a vector of
length n, in which case the sum of x is used.

n The time period of the original measurements.

m The specified future length of time. If m = NULL, then the tolerance limits will be
constructed assuming n for the future length of time.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of occurrences in future time lengths of size m to be covered by
this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

method The method for calculating the lower and upper confidence bounds, which are
used in the calculation of the tolerance bounds. The default method is "TAB",
which is the tabular method and is usually preferred for a smaller number of
occurrences. "LS" gives the large-sample (Wald) method, which is usually pre-
ferred when the number of occurrences is x>20. "SC" gives the score method,
which again is usually used when the number of occurrences is relatively large.
"CC" gives a continuity-corrected version of the large-sample method. "VS"
gives a variance-stabilized version of the large-sample method. "RVS" is a recen-
tered version of the variance-stabilization method. "FT" is the Freeman-Tukey
method. "CSC" is the continuity-corrected version of the score method. More
information on these methods can be found in the "References".

Value

poistol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of occurrences in future time periods of length m.

lambda.hat The mean occurrence rate per unit time, calculated by x/n.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.
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References

Barker, L. (2002), A Comparison of Nine Confidence Intervals for a Poisson Parameter When the
Expected Number of Events Is ≤ 5, The American Statistician, 56, 85–89.

Freeman, M. F. and Tukey, J. W. (1950), Transformations Related to the Angular and the Square
Root, Annals of Mathematical Statistics, 21, 607–611.

Hahn, G. J. and Chandra, R. (1981), Tolerance Intervals for Poisson and Binomial Variables, Jour-
nal of Quality Technology, 13, 100–110.

See Also

Poisson, umatol.int

Examples

## 95%/90% 1-sided Poisson tolerance limits for future
## occurrences in a period of length 3. All seven methods
## are presented for comparison.

poistol.int(x = 45, n = 9, m = 3, alpha = 0.05, P = 0.90,
side = 1, method = "TAB")

poistol.int(x = 45, n = 9, m = 3, alpha = 0.05, P = 0.90,
side = 1, method = "LS")

poistol.int(x = 45, n = 9, m = 3, alpha = 0.05, P = 0.90,
side = 1, method = "SC")

poistol.int(x = 45, n = 9, m = 3, alpha = 0.05, P = 0.90,
side = 1, method = "CC")

poistol.int(x = 45, n = 9, m = 3, alpha = 0.05, P = 0.90,
side = 1, method = "VS")

poistol.int(x = 45, n = 9, m = 3, alpha = 0.05, P = 0.90,
side = 1, method = "RVS")

poistol.int(x = 45, n = 9, m = 3, alpha = 0.05, P = 0.90,
side = 1, method = "FT")

poistol.int(x = 45, n = 9, m = 3, alpha = 0.05, P = 0.90,
side = 1, method = "CSC")

## 95%/90% 2-sided Poisson tolerance intervals for future
## occurrences in a period of length 15. All seven methods
## are presented for comparison.

poistol.int(x = 45, n = 9, m = 15, alpha = 0.05, P = 0.90,
side = 2, method = "TAB")

poistol.int(x = 45, n = 9, m = 15, alpha = 0.05, P = 0.90,
side = 2, method = "LS")

poistol.int(x = 45, n = 9, m = 15, alpha = 0.05, P = 0.90,
side = 2, method = "SC")

poistol.int(x = 45, n = 9, m = 15, alpha = 0.05, P = 0.90,
side = 2, method = "CC")

poistol.int(x = 45, n = 9, m = 15, alpha = 0.05, P = 0.90,
side = 2, method = "VS")

poistol.int(x = 45, n = 9, m = 15, alpha = 0.05, P = 0.90,
side = 2, method = "RVS")
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poistol.int(x = 45, n = 9, m = 15, alpha = 0.05, P = 0.90,
side = 2, method = "FT")

poistol.int(x = 45, n = 9, m = 15, alpha = 0.05, P = 0.90,
side = 2, method = "CSC")

regtol.int (Multiple) Linear Regression Tolerance Bounds

Description

Provides 1-sided or 2-sided (multiple) linear regression tolerance bounds. It is also possible to fit a
regression through the origin model.

Usage

regtol.int(reg, new.x = NULL, side = 1, alpha = 0.05, P = 0.99, new = FALSE)

Arguments

reg An object of class lm (i.e., the results from a linear regression routine).

new.x An optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are used.

side Whether a 1-sided or 2-sided tolerance bound is required (determined by side
= 1 or side = 2, respectively).

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by the tolerance bound(s).

new When new = TRUE, the function shows updated version of outcomes.

Value

regtol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of the population covered by the tolerance bound(s).

y The value of the response given on the left-hand side of the model in reg.

y.hat The predicted value of the response for the fitted linear regression model. This
data frame is sorted by this value.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.
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References

Wallis, W. A. (1951), Tolerance Intervals for Linear Regression, in Second Berkeley Symposium on
Mathematical Statistics and Probability, ed. J. Neyman, Berkeley: University of CA Press, 43–51.

Young, D. S. (2013), Regression Tolerance Intervals, Communications in Statistics - Simulation and
Computation, 42, 2040–2055.

See Also

lm

Examples

## 95%/95% 2-sided linear regression tolerance bounds
## for a sample of size 100.

set.seed(100)
x <- runif(100, 0, 10)
y <- 20 + 5*x + rnorm(100, 0, 3)
out <- regtol.int(reg = lm(y ~ x), new.x = data.frame(x = c(3, 6, 9)),

side = 2, alpha = 0.05, P = 0.95)
out

plottol(out, x = cbind(1, x), y = y, side = "two", x.lab = "X",
y.lab = "Y")

semiconttol.int Generalized Intervals for Semicontinuous Data

Description

Provides confidence intervals, one-sided prediction limits, and one-sided tolerance limits for semi-
continuous data — either zero-inflated gamma (ZIG) or zero-inflated lognormal (ZILN) distribution
— using a generalized fiducial framework.

Usage

semiconttol.int(x, alpha = 0.05, P = 0.99, N = 1000)

Arguments

x A vector of semicontinuous data.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

N The number of fiducial samples to generate.
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Value

semiconttol.int returns a list with items:

ZIG.CI The generalized confidence interval under a ZIG distribution.

ZIG.PI The generalized (upper) prediction limit under a ZIG distribution.

ZIG.TI The generalized (upper) tolerance limit under a ZIG distribution.

ZIG.TI.appx The generalized (upper) tolerance limit under a ZIG distribution based on the
Wilson-Hilferty approximation.

ZILN.CI The generalized confidence interval under a ZILN distribution.

ZILN.PI The generalized (upper) prediction limit under a ZILN distribution.

ZILN.TI The generalized (upper) tolerance limit under a ZILN distribution.

ZILN.TI.appx The generalized (upper) tolerance limit under a ZILN distribution based on an
approximation used in Hasan and Krishnamoorthy (2018).

‘NA‘ The number of times generalized fiducial quantities could not be calculated due
to unlucky samples being drawn; e.g., a sample with all 0s. This will happen
rarely and usually only when there is a very large proportion of zeros.

References

Hasan, M. S. and Krishnamoorthy, K. (2018), Confidence Intervals for the Mean and a Percentile
Based on Zero-Inflated Lognormal Data, Journal of Statistical Computation and Simulation, 88,
1499–1514.

Zou, Y. and Young, D. S. (2024), Fiducial-Based Statistical Intervals for Zero-Inflated Gamma Data,
Journal of Statistical Theory and Practice, 18, 1–20.

See Also

fidbintol.int, fidnegbintol.int, fidpoistol.int

Examples

## Generalized intervals assuming 95% confidence and
## 95% content for a dataset analyzed in Hasan and
## Krishnamoorthy (2018).

x <- c(6, 0, 6, 9, 6.5, 0, 0, 0, 1, 0.5, 2, 2, 0, 0, 1)
set.seed(1)
out <- semiconttol.int(x, P = 0.95, alpha = 0.05, N = 500)
out
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simnormtol.int Simultaneous Normal (or Log-Normal) Tolerance Intervals

Description

Provides simultaneous 1-sided or 2-sided tolerance intervals for data distributed according to either
a normal distribution or log-normal distribution.

Usage

simnormtol.int(x, alpha = 0.05, P = 0.99, side = 1,
method = c("EXACT", "BONF"), m = 50, log.norm = FALSE)

Arguments

x Either a matrix or list of vectors of the data. If a matrix, then the columns are
the samples from the different normal (or log-normal) populations. If method =
"EXACT", then x must be a matrix.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

side Whether simultaneous 1-sided or 2-sided tolerance intervals are required (deter-
mined by side = 1 or side = 2, respectively).

method The method for calculating the k-factors. "EXACT" is an exact method that can
be used when all l groups have the same sample size. "BONF" is an approximate
method using the Bonferroni inequality, which can be used when the l groups
have different sample sizes.

m The maximum number of subintervals to be used in the integrate function.
This is necessary only for method = "EXACT". The larger the number, the more
accurate the solution. Too low of a value can result in an error. A large value
can also cause the function to be slow for method = "EXACT".

log.norm If TRUE, then the data is considered to be from a log-normal distribution, in
which case the output gives tolerance intervals for the log-normal distribution.
The default is FALSE.

Details

Recall that if the random variable X is distributed according to a log-normal distribution, then the
random variable Y = ln(X) is distributed according to a normal distribution.

Value

normtol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.
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x.bar The sample means.

1-sided.lower The simultaneous 1-sided lower tolerance bounds. This is given only if side =
1.

1-sided.upper The simultaneous 1-sided upper tolerance bounds. This is given only if side =
1.

2-sided.lower The simultaneous 2-sided lower tolerance bounds. This is given only if side =
2.

2-sided.upper The simultaneous 2-sided upper tolerance bounds. This is given only if side =
2.

Note

The code for this functions is built upon code provided by Andrew Landgraf.

References

Krishnamoorthy, K. and Mathew, T. (2009), Statistical Tolerance Regions: Theory, Applications,
and Computation, Wiley.

Mee, R. W. (1990), Simultaneous Tolerance Intervals for Normal Populations with Common Vari-
ance, Technometrics, 32, 83-92.

See Also

Normal, K.factor.sim

Examples

## 95%/95% simultaneous 1-sided normal tolerance
## intervals for two samples of unequal size.

set.seed(100)
x <- list(rnorm(5,1),rnorm(7,1,2))
out <- simnormtol.int(x = x, alpha = 0.05, P = 0.95,

side = 1, method = "BONF")
out

TwoParExponential The 2-Parameter Exponential Distribution

Description

Density, distribution function, quantile function, and random generation for the 2-parameter expo-
nential distribution with rate equal to rate and shift equal to shift.
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Usage

d2exp(x, rate = 1, shift = 0, log = FALSE)
p2exp(q, rate = 1, shift = 0, lower.tail = TRUE, log.p = FALSE)
q2exp(p, rate = 1, shift = 0, lower.tail = TRUE, log.p = FALSE)
r2exp(n, rate = 1, shift = 0)

Arguments

x, q Vector of quantiles.

p Vector of probabilities.

n The number of observations. If length>1, then the length is taken to be the
number required.

rate Vector of rates.

shift Vector of shifts.

log, log.p Logical vectors. If TRUE, then probabilities are given as log(p).

lower.tail Logical vector. If TRUE, then probabilities are P [X ≤ x], else P [X > x].

Details

If rate or shift are not specified, then they assume the default values of 1 and 0, respectively.

The 2-parameter exponential distribution has density

f(x) =
1

β
e(x−µ)/β

where x ≥ µ, µ is the shift parameter, and β > 0 is the scale parameter.

Value

d2exp gives the density, p2exp gives the distribution function, q2exp gives the quantile function,
and r2exp generates random deviates.

See Also

runif and .Random.seed about random number generation.

Examples

## Randomly generated data from the 2-parameter exponential
## distribution.

set.seed(100)
x <- r2exp(n = 500, rate = 3, shift = -10)
hist(x, main = "Randomly Generated Data", prob = TRUE)

x.1 = sort(x)
y <- d2exp(x = x.1, rate = 3, shift = -10)
lines(x.1, y, col = 2, lwd = 2)
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plot(x.1, p2exp(q = x.1, rate = 3, shift = -10), type = "l",
xlab = "x", ylab = "Cumulative Probabilities")

q2exp(p = 0.20, rate = 3, shift = -10, lower.tail = FALSE)
q2exp(p = 0.80, rate = 3, shift = -10)

umatol.int Uniformly Most Accurate Upper Tolerance Limits for Certain Discrete
Distributions

Description

Provides uniformly most accurate upper tolerance limits for the binomial, negative binomial, and
Poisson distributions.

Usage

umatol.int(x, n = NULL, dist = c("Bin", "NegBin", "Pois"), N,
alpha = 0.05, P = 0.99)

Arguments

x A vector of data which is distributed according to one of the binomial, negative
binomial, or Poisson distributions. If the length of x is 1, then it is assumed that
this number is the sum of iid values from the assumed distribution.

n The sample size of the data. If null, then n is calculated as the length of x.

dist The distribution for the data given by x. The options are "Bin" for the binomial
distribution, "NegBin" for the negative binomial distribution, and "Pois" for
the Poisson distribution.

N Must be specified for the binomial and negative binomial distributions. If dist
= "Bin", then N is the number of Bernoulli trials and must be a positive integer.
If dist = "NegBin", then N is the total number of successful trials (or dispersion
parameter) and must be strictly positive.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

Value

umatol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

p.hat The maximum likelihood estimate for the probability of success in each trial;
reported if dist = "Bin".
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nu.hat The maximum likelihood estimate for the probability of success in each trial;
reported if dist = "NegBin".

lambda.hat The maximum likelihood estimate for the rate of success; reported if dist =
"Pois".

1-sided.upper The 1-sided upper tolerance limit.

References

Zacks, S. (1970), Uniformly Most Accurate Tolerance Limits for Monotone Likelihood Ratio Fam-
ilies of Discrete Distributions, Journal of the American Statistical Association, 65, 307–316.

See Also

Binomial, NegBinomial, Poisson

Examples

## Examples from Zacks (1970).

umatol.int(25, n = 4, dist = "Bin", N = 10, alpha = 0.10,
P = 0.95)

umatol.int(13, n = 10, dist = "NegBin", N = 2, alpha = 0.10,
P = 0.95)

umatol.int(37, n = 10, dist = "Pois", alpha = 0.10, P = 0.95)

uniftol.int Uniform Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for data distributed according to a uniform distribu-
tion.

Usage

uniftol.int(x, alpha = 0.05, P = 0.99, upper = NULL,
lower = NULL, side = 1)

Arguments

x A vector of data which is distributed according to a uniform distribution.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

upper The upper bound of the data. When NULL, then the maximum of x is used.

lower The lower bound of the data. When NULL, then the minimum of x is used.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).
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Value

uniftol.int returns a data frame with items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

References

Faulkenberry, G. D. and Weeks, D. L. (1968), Sample Size Determination for Tolerance Limits,
Technometrics, 10, 343–348.

Examples

## 90%/90% 1-sided uniform tolerance intervals for a sample
## of size 50 with a known lower bound of 0.

set.seed(100)
x <- runif(50, 0, 50)
out <- uniftol.int(x = x, alpha = 0.10, P = 0.90, lower = 0,

side = 1)
out

plottol(out, x, plot.type = "hist", side = "two",
x.lab = "Uniform Data")

ZipfMandelbrot Zipf-Mandelbrot Distributions

Description

Density (mass), distribution function, quantile function, and random generation for the Zipf, Zipf-
Mandelbrot, and zeta distributions.

Usage

dzipfman(x, s, b = NULL, N = NULL, log = FALSE)
pzipfman(q, s, b = NULL, N = NULL, lower.tail = TRUE,

log.p = FALSE)
qzipfman(p, s, b = NULL, N = NULL, lower.tail = TRUE,

log.p = FALSE)
rzipfman(n, s, b = NULL, N = NULL)
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Arguments

x, q Vector of quantiles.

p Vector of probabilities.

n The number of observations. If length>1, then the length is taken to be the
number required.

s, b The shape parameters, both of which must be greater than 0. b must be specified
for Zipf-Mandelbrot distributions.

N The number of categories, which must be integer-valued for Zipf and Zipf-
Mandelbrot distributions. For a zeta distribution, N = Inf must be used.

log, log.p Logical vectors. If TRUE, then the probabilities are given as log(p).

lower.tail Logical vector. If TRUE, then probabilities are P [X ≤ x], else P [X > x].

Details

The Zipf-Mandelbrot distribution has mass

p(x) =
(x+ b)−s∑N
i=1(i+ b)−s

,

where x = 1, . . . , N , s,b>0 are shape parameters, and N is the number of distinct categories. The
Zipf distribution is just a special case of the Zipf-Mandelbrot distribution where the second shape
parameter b=0. The zeta distribution has mass

p(x) =
x−s

ζ(s)
,

where x = 1, 2, . . ., s>1 is the shape parameter, and ζ() is the Riemann zeta function given by:

ζ(t) =

∞∑
i=1

1

it
< ∞.

Note that the zeta distribution is just a special case of the Zipf distribution where s>1 and N goes to
infinity.

Value

dzipfman gives the density (mass), pzipfman gives the distribution function, qzipfman gives the
quantile function, and rzipfman generates random deviates for the specified distribution.

Note

These functions may be updated in a future version of the package so as to allow greater flexibility
with the inputs.
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References

Mandelbrot, B. B. (1965), Information Theory and Psycholinguistics. In B. B. Wolman and E.
Nagel, editors. Scientific Psychology, Basic Books.

Young, D. S. (2013), Approximate Tolerance Limits for Zipf-Mandelbrot Distributions, Physica A:
Statistical Mechanics and its Applications, 392, 1702–1711.

Zipf, G. K. (1949), Human Behavior and the Principle of Least Effort, Hafner.

Zornig, P. and Altmann, G. (1995), Unified Representation of Zipf Distributions, Computational
Statistics and Data Analysis, 19, 461–473.

See Also

runif and .Random.seed about random number generation.

Examples

## Randomly generated data from the Zipf distribution.

set.seed(100)
x <- rzipfman(n = 150, s = 2, N = 100)
hist(x, main = "Randomly Generated Data", prob = TRUE)

x.1 <- sort(x)
y <- dzipfman(x = x.1, s = 2, N = 100)
lines(x.1, y, col = 2, lwd = 2)

plot(x.1, pzipfman(q = x.1, s = 2, N = 100), type = "l",
xlab = "x", ylab = "Cumulative Probabilities")

qzipfman(p = 0.20, s = 2, N = 100, lower.tail = FALSE)
qzipfman(p = 0.80, s = 2, N = 100)

## Randomly generated data from the Zipf-Mandelbrot distribution.

set.seed(100)
x <- rzipfman(n = 150, s = 2, b = 3, N = 100)
hist(x, main = "Randomly Generated Data", prob = TRUE)

x.1 <- sort(x)
y <- dzipfman(x = x.1, s = 2, b = 3, N = 100)
lines(x.1, y, col = 2, lwd = 2)

plot(x.1, pzipfman(q = x.1, s = 2, b = 3, N = 100), type = "l",
xlab = "x", ylab = "Cumulative Probabilities")

qzipfman(p = 0.20, s = 2, b = 3, N = 100, lower.tail = FALSE)
qzipfman(p = 0.80, s = 2, b = 3, N = 100)

## Randomly generated data from the zeta distribution.

set.seed(100)
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x <- rzipfman(n = 100, s = 1.3, N = Inf)
hist(x, main = "Randomly Generated Data", prob = TRUE)

x.1 <- sort(x)
y <- dzipfman(x = x.1, s = 1.3, N = Inf)
lines(x.1, y, col = 2, lwd = 2)

plot(x.1, pzipfman(q = x.1, s = 1.3, N = Inf), type = "l",
xlab = "x", ylab = "Cumulative Probabilities")

qzipfman(p = 0.20, s = 1.3, lower.tail = FALSE, N = Inf)
qzipfman(p = 0.80, s = 1.3, N = Inf)

zipftol.int Zipf-Mandelbrot Tolerance Intervals

Description

Provides 1-sided or 2-sided tolerance intervals for data distributed according to Zipf, Zipf-Mandelbrot,
and zeta distributions.

Usage

zipftol.int(x, m = NULL, N = NULL, alpha = 0.05, P = 0.99,
side = 1, s = 1, b = 1, dist = c("Zipf",
"Zipf-Man", "Zeta"), ties = FALSE, ...)

Arguments

x A vector of raw data or a table of counts which is distributed according to a Zipf,
Zipf-Mandelbrot, or zeta distribution. Do not supply a vector of counts!

m The number of observations in a future sample for which the tolerance limits
will be calculated. By default, m = NULL and, thus, m will be set equal to the
original sample size.

N The number of categories when dist = "Zipf" or dist = "Zipf-Man". This is
not used when dist = "Zeta". If N = NULL, then N is estimated based on the
number of categories observed in the data.

alpha The level chosen such that 1-alpha is the confidence level.

P The proportion of the population to be covered by this tolerance interval.

side Whether a 1-sided or 2-sided tolerance interval is required (determined by side
= 1 or side = 2, respectively).

s The initial value to estimate the shape parameter in the zm.ll function.

b The initial value to estimate the second shape parameter in the zm.ll function
when dist = "Zipf-Man".
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dist Options are dist = "Zipf", dist = "Zipf-Man", or dist = "Zeta" if the data is
distributed according to the Zipf, Zipf-Mandelbrot, or zeta distribution, respec-
tively.

ties How to handle if there are other categories with the same frequency as the cat-
egory at the estimated tolerance limit. The default is FALSE, which does no
correction. If TRUE, then the highest ranked (i.e., lowest number) of the tied
categories is selected for the lower limit and the lowest ranked (i.e., highest
number) of the tied categories is selected for the upper limit.

... Additional arguments passed to the zm.ll function, which is used for maximum
likelihood estimation.

Details

Zipf-Mandelbrot models are commonly used to model phenomena where the frequencies of cat-
egorical data are approximately inversely proportional to its rank in the frequency table. Zipf-
Mandelbrot distributions are heavily right-skewed distributions with a (relatively) large mass placed
on the first category. For most practical applications, one will typically be interested in 1-sided up-
per bounds.

Value

zipftol.int returns a data frame with the following items:

alpha The specified significance level.

P The proportion of the population covered by this tolerance interval.

s.hat MLE for the shape parameter s.

b.hat MLE for the shape parameter b when dist = "Zipf-Man".

1-sided.lower The 1-sided lower tolerance bound. This is given only if side = 1.

1-sided.upper The 1-sided upper tolerance bound. This is given only if side = 1.

2-sided.lower The 2-sided lower tolerance bound. This is given only if side = 2.

2-sided.upper The 2-sided upper tolerance bound. This is given only if side = 2.

Note

This function may be updated in a future version of the package so as to allow greater flexibility
with the inputs.

References

Mandelbrot, B. B. (1965), Information Theory and Psycholinguistics. In B. B. Wolman and E.
Nagel, editors. Scientific Psychology, Basic Books.

Young, D. S. (2013), Approximate Tolerance Limits for Zipf-Mandelbrot Distributions, Physica A:
Statistical Mechanics and its Applications, 392, 1702–1711.

Zipf, G. K. (1949), Human Behavior and the Principle of Least Effort, Hafner.

Zornig, P. and Altmann, G. (1995), Unified Representation of Zipf Distributions, Computational
Statistics and Data Analysis, 19, 461–473.
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See Also

ZipfMandelbrot, zm.ll

Examples

## 95%/99% 1-sided tolerance intervals for the Zipf,
## Zipf-Mandelbrot, and zeta distributions.

set.seed(100)

s <- 2
b <- 5
N <- 50

zipf.data <- rzipfman(n = 150, s = s, N = N)
zipfman.data <- rzipfman(n = 150, s = s, b = b, N = N)
zeta.data <- rzipfman(n = 150, s = s, N = Inf)

out.zipf <- zipftol.int(zipf.data, dist = "Zipf")
out.zipfman <- zipftol.int(zipfman.data, dist = "Zipf-Man")
out.zeta <- zipftol.int(zeta.data, N = Inf, dist = "Zeta")

out.zipf
out.zipfman
out.zeta

zm.ll Maximum Likelihood Estimation for Zipf-Mandelbrot Models

Description

Performs maximum likelihood estimation for the parameters of the Zipf, Zipf-Mandelbrot, and zeta
distributions.

Usage

zm.ll(x, N = NULL, s = 1, b = 1, dist = c("Zipf", "Zipf-Man",
"Zeta"), ...)

Arguments

x A vector of raw data or a table of counts which is distributed according to a Zipf,
Zipf-Mandelbrot, or zeta distribution. Do not supply a vector of counts!

N The number of categories when dist = "Zipf" or dist = "Zipf-Man". This is
not used when dist = "Zeta". If N = NULL, then N is estimated based on the
number of categories observed in the data.

s The initial value to estimate the shape parameter, which is set to 1 by default. If
a poor initial value is specified, then a WARNING message is returned.
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b The initial value to estimate the second shape parameter when dist = "Zipf-Man",
which is set to 1 by default. If a poor initial value is specified, then a WARNING
message is returned.

dist Options are dist = "Zipf", dist = "Zipf-Man", or dist = "Zeta" if the data is
distributed according to the Zipf, Zipf-Mandelbrot, or zeta distribution, respec-
tively.

... Additional arguments passed to the mle function.

Details

Zipf-Mandelbrot models are commonly used to model phenomena where the frequencies of cate-
gorical data are approximately inversely proportional to its rank in the frequency table.

Value

See the help file for mle to see how the output is structured.

Note

This function may be updated in a future version of the package so as to allow greater flexibility
with the inputs.

References

Mandelbrot, B. B. (1965), Information Theory and Psycholinguistics. In B. B. Wolman and E.
Nagel, editors. Scientific Psychology, Basic Books.

Zipf, G. K. (1949), Human Behavior and the Principle of Least Effort, Hafner.

Zornig, P. and Altmann, G. (1995), Unified Representation of Zipf Distributions, Computational
Statistics and Data Analysis, 19, 461–473.

See Also

mle, ZipfMandelbrot

Examples

## Maximum likelihood estimation for randomly generated data
## from the Zipf, Zipf-Mandelbrot, and zeta distributions.

set.seed(100)

s <- 2
b <- 5
N <- 50

zipf.data <- rzipfman(n = 500, s = s, N = N)
out.zipf <- zm.ll(zipf.data, N = N, dist = "Zipf")
stats4::coef(out.zipf)
stats4::vcov(out.zipf)
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zipfman.data <- rzipfman(n = 500, s = s, b = b, N = N)
out.zipfman <- zm.ll(zipfman.data, N = N, dist = "Zipf-Man")
stats4::coef(out.zipfman)
diag(stats4::vcov(out.zipfman))

zeta.data <- rzipfman(n = 200, s = s, N = Inf)
out.zeta <- zm.ll(zeta.data, N = Inf, dist = "Zeta")
stats4::coef(out.zeta)
stats4::vcov(out.zeta)
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